177 research outputs found

    A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception

    Get PDF
    Herein investigated are computationally simple microphone-array beamformers that are independent of the frequency-spectra of all signals, all interference, and all noises. These beamformers allow the listener to tune the desired azimuth-elevation “look direction.” No prior information is needed of the interference. These beamformers deploy a physically compact triad of three collocated but orthogonally oriented velocity sensors. These proposed schemes’ efficacy is verified by a jury test, using simulated data constructed with Mandarin Chinese (a.k.a. Putonghua) speech samples. For example, a desired speech signal, originally at a very adverse signal-to-interference-and-noise power ratio (SINR) of -30 dB, may be processed to become fully intelligible to the jury

    A Framework for Speech Enhancement with Ad Hoc Microphone Arrays

    Get PDF

    Acoustic Impulse Responses for Wearable Audio Devices

    Full text link
    We present an open-access dataset of over 8000 acoustic impulse from 160 microphones spread across the body and affixed to wearable accessories. The data can be used to evaluate audio capture and array processing systems using wearable devices such as hearing aids, headphones, eyeglasses, jewelry, and clothing. We analyze the acoustic transfer functions of different parts of the body, measure the effects of clothing worn over microphones, compare measurements from a live human subject to those from a mannequin, and simulate the noise-reduction performance of several beamformers. The results suggest that arrays of microphones spread across the body are more effective than those confined to a single device.Comment: To appear at ICASSP 201

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    Robust Multichannel Microphone Beamforming

    No full text
    In this thesis, a method for the design and implementation of a spatially robust multichannel microphone beamforming system is presented. A set of spatial correlation functions are derived for 2D and 3D far-field/near-field scenarios based on von Mises(-Fisher), Gaussian, and uniform source location distributions. These correlation functions are used to design spatially robust beamformers and blocking beamformers (nullformers) designed to enhance or suppress a known source, where the target source location is not perfectly known due to either an incorrect location estimate or movement of the target while the beamformers are active. The spatially robust beam/null-formers form signal and interferer plus noise references which can be further processed via a blind source separation algorithm to remove mutual components - removing the interference and sensor noise from the signal path and vice versa. The noise reduction performance of the combined beamforming and blind source separation system approaches that of a perfect information MVDR beamformer under reverberant conditions. It is demonstrated that the proposed algorithm can be implemented on low-power hardware with good performance on hardware similar to current mobile platforms using a four-element microphone array

    Parametric high resolution techniques for radio astronomical imaging

    Full text link
    The increased sensitivity of future radio telescopes will result in requirements for higher dynamic range within the image as well as better resolution and immunity to interference. In this paper we propose a new matrix formulation of the imaging equation in the cases of non co-planar arrays and polarimetric measurements. Then we improve our parametric imaging techniques in terms of resolution and estimation accuracy. This is done by enhancing both the MVDR parametric imaging, introducing alternative dirty images and by introducing better power estimates based on least squares, with positive semi-definite constraints. We also discuss the use of robust Capon beamforming and semi-definite programming for solving the self-calibration problem. Additionally we provide statistical analysis of the bias of the MVDR beamformer for the case of moving array, which serves as a first step in analyzing iterative approaches such as CLEAN and the techniques proposed in this paper. Finally we demonstrate a full deconvolution process based on the parametric imaging techniques and show its improved resolution and sensitivity compared to the CLEAN method.Comment: To appear in IEEE Journal of Selected Topics in Signal Processing, Special issue on Signal Processing for Astronomy and space research. 30 page
    • …
    corecore