1,086 research outputs found

    Performance Modeling of the PeopleSoft Multi-Tier Remote Computing Architecture

    Full text link
    Complex client-server configurations being designed today require a new and closely coordinated approach to analytic modeling and measurement. A closed queuing network model for a two-tiered PeopleSoft 6 client-server system with an Oracle database server is demonstrated using a new performance modeling tool that applies mean value analysis. The focus of this work is on the measurement and modeling of the PeopleSoft architecture to provide useful capacity planning insights for an actual large-scale university-wide deployment. A testbed and database exerciser are then developed to measure model parameters and perform the initial validation tests. The testbed also provides preliminary test data on a proposed three-tiered deployment architecture that includes the Citrix WinFrame environment as an intermediate level between the client and the Oracle server.http://deepblue.lib.umich.edu/bitstream/2027.42/107929/1/citi-tr-97-5.pd

    Maximum Likelihood Estimation of Closed Queueing Network Demands from Queue Length Data

    Get PDF
    Resource demand estimation is essential for the application of analyical models, such as queueing networks, to real-world systems. In this paper, we investigate maximum likelihood (ML) estimators for service demands in closed queueing networks with load-independent and load-dependent service times. Stemming from a characterization of necessary conditions for ML estimation, we propose new estimators that infer demands from queue-length measurements, which are inexpensive metrics to collect in real systems. One advantage of focusing on queue-length data compared to response times or utilizations is that confidence intervals can be rigorously derived from the equilibrium distribution of the queueing network model. Our estimators and their confidence intervals are validated against simulation and real system measurements for a multi-tier application

    Configuration of Distributed Message Converter Systems using Performance Modeling

    Get PDF
    To find a configuration of a distributed system satisfying performance goals is a complex search problem that involves many design parameters, like hardware selection, job distribution and process configuration. Performance models are a powerful tools to analyse potential system configurations, however, their evaluation is expensive, such that only a limited number of possible configurations can be evaluated. In this paper we present a systematic method to find a satisfactory configuration with feasible effort, based on a two-step approach. First, using performance estimates a hardware configuration is determined and then the software configuration is incrementally optimized evaluating Layered Queueing Network models. We applied this method to the design of performant EDI converter systems in the financial domain, where increasing message volumes need to be handled due to the increasing importance of B2B interaction

    Control of Robotic Mobility-On-Demand Systems: a Queueing-Theoretical Perspective

    Full text link
    In this paper we present and analyze a queueing-theoretical model for autonomous mobility-on-demand (MOD) systems where robotic, self-driving vehicles transport customers within an urban environment and rebalance themselves to ensure acceptable quality of service throughout the entire network. We cast an autonomous MOD system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm minimizing the number of (autonomously) rebalancing vehicles and keeping vehicles availabilities balanced throughout the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time rebalancing algorithm, which is applied to a case study of New York City. The case study shows that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 60% of the size of the current taxi fleet). Finally, we extend our queueing-theoretical setup to include congestion effects, and we study the impact of autonomously rebalancing vehicles on overall congestion. Collectively, this paper provides a rigorous approach to the problem of system-wide coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits of robotic transportation networks.Comment: 10 pages, To appear at RSS 201

    JMT – Performance Engineering Tools for System Modeling

    Get PDF
    We present the Java Modelling Tools (JMT) suite, an integrated framework of Java tools for performance evaluation of computer systems using queueing models. The suite offers a rich user interface that simplifies the definition of performance models by means of wizard dialogs and of a graphical design workspace. The performance evaluation features of JMT span a wide range of state-of-the-art methodologies including discrete-event simulation, mean value analysis of product-form networks, analytical identification of bottleneck resources in multiclass environments, and workload characterization with fuzzy clustering. The discrete-event simulator supports several advanced modeling features such as finite capacity regions, load-dependent service times, bursty processes, fork-and-join nodes, and implements spectral estimation for analysis of simulative results. The suite is open-source, released under the GNU general public license (GPL), and it is available for free download at http://jmt.sourceforge.net

    QMLE: a methodology for statistical inference of service demands from queueing data

    Get PDF
    Estimating the demands placed by services on physical resources is an essential step for the definition of performance models. For example, scalability analysis relies on these parameters to predict queueing delays under increasing loads. In this paper, we investigate maximum likelihood (ML) estimators for demands at load-independent and load-dependent resources in systems with parallelism constraints. We define a likelihood function based on state measurements and derive necessary conditions for its maximization. We then obtain novel estimators that accurately and inexpensively obtain service demands using only aggregate state data. With our approach, and also thanks to approximation methods for computing marginal and joint distributions for the load-dependent case, confidence intervals can be rigorously derived, explicitly taking into account both topology and concurrency levels of the services. Our estimators and their confidence intervals are validated against simulations and real system measurements for two multi-tier applications, showing high accuracy also in the presence of load-dependent resources

    Memory-aware sizing for in-memory databases

    Get PDF
    In-memory database systems are among the technological drivers of big data processing. In this paper we apply analytical modeling to enable efficient sizing of in-memory databases. We present novel response time approximations under online analytical processing workloads to model thread-level forkjoin and per-class memory occupation.We combine these approximations with a non-linear optimization program to minimize memory swapping in in-memory database clusters. We compare our approach with state-of-the-art response time approximations and trace-driven simulation using real data from an SAP HANA in-memory system and show that our optimization model is significantly more accurate than existing approaches at similar computational costs

    Performance Modeling of Softwarized Network Services Based on Queuing Theory with Experimental Validation

    Get PDF
    Network Functions Virtualization facilitates the automation of the scaling of softwarized network services (SNSs). However, the realization of such a scenario requires a way to determine the needed amount of resources so that the SNSs performance requisites are met for a given workload. This problem is known as resource dimensioning, and it can be efficiently tackled by performance modeling. In this vein, this paper describes an analytical model based on an open queuing network of G/G/m queues to evaluate the response time of SNSs. We validate our model experimentally for a virtualized Mobility Management Entity (vMME) with a three-tiered architecture running on a testbed that resembles a typical data center virtualization environment. We detail the description of our experimental setup and procedures. We solve our resulting queueing network by using the Queueing Networks Analyzer (QNA), Jackson’s networks, and Mean Value Analysis methodologies, and compare them in terms of estimation error. Results show that, for medium and high workloads, the QNA method achieves less than half of error compared to the standard techniques. For low workloads, the three methods produce an error lower than 10%. Finally, we show the usefulness of the model for performing the dynamic provisioning of the vMME experimentally.This work has been partially funded by the H2020 research and innovation project 5G-CLARITY (Grant No. 871428)National research project 5G-City: TEC2016-76795-C6-4-RSpanish Ministry of Education, Culture and Sport (FPU Grant 13/04833). We would also like to thank the reviewers for their valuable feedback to enhance the quality and contribution of this wor

    Teaching Concurrent Software Design: A Case Study Using Android

    Full text link
    In this article, we explore various parallel and distributed computing topics from a user-centric software engineering perspective. Specifically, in the context of mobile application development, we study the basic building blocks of interactive applications in the form of events, timers, and asynchronous activities, along with related software modeling, architecture, and design topics.Comment: Submitted to CDER NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for Undergraduate
    • …
    corecore