5 research outputs found

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Tactical Problems in Vehicle Routing Applications

    Get PDF
    The class of Vehicle Routing Problems (VRPs) is one the most studied topics in the Operations Research community. The vast majority of the published papers focus on single-period problems, with a few branches of the literature considering multiperiod generalisations. All of these problems though, consider a short horizon and aim at optimising the decisions at an operational level, i.e. that will have to be taken in the near future. One step above are tactical problems, i.e. problems concerning a longer time horizon. Tactical problems are of a fundamental importance as they directly influence the daily operations, and therefore a part of the incurred costs, for a long time. The main focus of this thesis is to study tactical problems arising in routing applications. The first problem considered concerns the design of a fleet of vehicles. Transportation providers often have to design a fleet that will be used for daily operations across a long-time span. Trucks used for transportation are very expensive to purchase, maintain or hire. On the other side, the composition of the fleet strongly influences the daily plans, and therefore costs such as fuel or drivers’ wages. Balancing these two components is challenging, and optimisation models can lead to substantial savings or provide a useful basis for informed decisions. The second problem presented focuses on the use of a split deliveries policy in multi-period routing problems. It is known that the combined optimisation of delivery scheduling and routing can be very beneficial, and lead to significant reductions in costs. However, it also adds complexity to the model. The same is true when split deliveries are introduced. The problem studied considers the possibility of splitting the deliveries over different days. An analysis, both theoretical and numerical, of the impact of this approach on the overall cost is provided. Finally, a districting problem for routing applications is considered. These types of problems typically arise when transportation providers wish to increase their service consistency. There are several reasons a company may wish to do so: to strengthen the customer-driver relationship, to increase drivers’ familiarity with their service area, or, to simplify the management of the service area. A typical approach, considered here, is to divide the area under consideration in sectors that will be subsequently assigned to specific drivers. This type of problem is inherently of a multi-period and tactical nature. A new formulation is proposed, integrating standard routing models into the design of territories. This makes it possible to investigate how operational constraints and other requirements, such as having a fair workload division amongst drivers, influence the effectiveness of the approach. An analysis of the cost of districting, in terms of increased routing cost and decreased routing flexibility, and of several operational constraints, is presented
    corecore