31 research outputs found

    Soft-Error Resilience Framework For Reliable and Energy-Efficient CMOS Logic and Spintronic Memory Architectures

    Get PDF
    The revolution in chip manufacturing processes spanning five decades has proliferated high performance and energy-efficient nano-electronic devices across all aspects of daily life. In recent years, CMOS technology scaling has realized billions of transistors within large-scale VLSI chips to elevate performance. However, these advancements have also continually augmented the impact of Single-Event Transient (SET) and Single-Event Upset (SEU) occurrences which precipitate a range of Soft-Error (SE) dependability issues. Consequently, soft-error mitigation techniques have become essential to improve systems\u27 reliability. Herein, first, we proposed optimized soft-error resilience designs to improve robustness of sub-micron computing systems. The proposed approaches were developed to deliver energy-efficiency and tolerate double/multiple errors simultaneously while incurring acceptable speed performance degradation compared to the prior work. Secondly, the impact of Process Variation (PV) at the Near-Threshold Voltage (NTV) region on redundancy-based SE-mitigation approaches for High-Performance Computing (HPC) systems was investigated to highlight the approach that can realize favorable attributes, such as reduced critical datapath delay variation and low speed degradation. Finally, recently, spin-based devices have been widely used to design Non-Volatile (NV) elements such as NV latches and flip-flops, which can be leveraged in normally-off computing architectures for Internet-of-Things (IoT) and energy-harvesting-powered applications. Thus, in the last portion of this dissertation, we design and evaluate for soft-error resilience NV-latching circuits that can achieve intriguing features, such as low energy consumption, high computing performance, and superior soft errors tolerance, i.e., concurrently able to tolerate Multiple Node Upset (MNU), to potentially become a mainstream solution for the aerospace and avionic nanoelectronics. Together, these objectives cooperate to increase energy-efficiency and soft errors mitigation resiliency of larger-scale emerging NV latching circuits within iso-energy constraints. In summary, addressing these reliability concerns is paramount to successful deployment of future reliable and energy-efficient CMOS logic and spintronic memory architectures with deeply-scaled devices operating at low-voltages

    Energy/Reliability Trade-Offs in Low-Voltage ReRAM-Based Non-Volatile Flip-Flop Design

    Get PDF
    The total power budget of Ultra-Low Power (ULP) VLSI Systems-on-Chip (SoCs) is often dominated by the leakage power of embedded memories as well as status registers. On the one hand, supply voltage scaling down to the near-threshold (near-VT) or even to the subthreshold (sub-VT) domain is a commonly used, efficient technique to reduce both leakage power and active energy dissipation. On the other hand, emerging CMOS-compatible device technologies such as Resistive Memories (ReRAMs) enable non-volatile, on-chip data storage and zero-leakage sleep periods. For the first time, we present and compare ReRAM-based Non-Volatile Flip-Flop (NVFF) topologies which are optimized for low-voltage operation (including near-VT and sub-VT operation). Three low-voltage NVFF circuit topologies are proposed and evaluated in terms of energy dissipation and reliability. Using topologies with two complementary programmed ReRAM devices, Monte Carlo simulations accounting for parametric variations confirm reliable data restore operation from the ReRAM devices at a sub- voltage as low as 400 mV. A topology using a single ReRAM device exhibits lower write energy, but requires a near- voltage for robust read. Energy characterization is performed at nominal, near-VT , and sub-VT supply voltages. The minimum energy point is reached for near-VT read operation with a total read+write energy of 735 fJ

    MTJ-BASED HYBRID STORAGE CELLS FOR “NORMALLY-OFF AND INSTANT-ON” COMPUTING

    Get PDF
    Besides increasing a computing throughput, multi-core processor architectures bring increased capacity of SRAM-based cache memory. As a result, cache memory now occupies large proportion of recent processor chips, becoming a major source of the leakage power consumption. The power gating technique applied on a SRAM cache is not efficient since it is paid by data loss. In this paper, we present two hybrid memory cells that combine a conventional volatile CMOS part with Magnetic Tunnel Junctions (MTJs) able to store a data bit in a non-volatile way. Being inherently non-volatile, these hybrid cells enable instantaneous power off and thus complete reduction of the leakage power. Moreover, given that the data bit can be stored in local MTJs and not in distant storage memories, these cells also offer instantaneous and efficient data retrieval. To demonstrate their functionality, the cells are designed using 28 nm FD-SOI technology for the CMOS part and 45 nm round spin transfer torque MTJs (STT-MTJs) with perpendicular magnetization anisotropy. We report the measured performances of the cells in terms of required silicon area, robustness, read/write speed and energy consumption

    Towards Energy-Efficient and Reliable Computing: From Highly-Scaled CMOS Devices to Resistive Memories

    Get PDF
    The continuous increase in transistor density based on Moore\u27s Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation. Based on the results, using the 15nm technology offers 4-times less energy and 3-fold smaller footprint. New challenges also arise, such as relative proportion of leakage power in standby mode that can be addressed by post-CMOS technologies. Spin-Transfer Torque Random Access Memory (STT-MRAM) has been explored as a post-CMOS technology for embedded and data storage applications seeking non-volatility, near-zero standby energy, and high density. Towards attaining these objectives for practical implementations, various techniques to mitigate the specific reliability challenges associated with STT-MRAM elements are surveyed, classified, and assessed herein. Cost and suitability metrics assessed include the area of nanomagmetic and CMOS components per bit, access time and complexity, Sense Margin (SM), and energy or power consumption costs versus resiliency benefits. In an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs), a new SA has been introduced called Adaptive Sense Amplifier (ASA). ASA can benefit from low Bit Error Rate (BER) and low Energy Delay Product (EDP) by combining the properties of two of the commonly used SAs, Pre-Charge Sense Amplifier (PCSA) and Separated Pre-Charge Sense Amplifier (SPCSA). ASA can operate in either PCSA or SPCSA mode based on the requirements of the circuit such as energy efficiency or reliability. Then, ASA is utilized to propose a novel approach to actually leverage the PV in Non-Volatile Memory (NVM) arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time

    Spin-Transfer-Torque (STT) Devices for On-chip Memory and Their Applications to Low-standby Power Systems

    Get PDF
    With the scaling of CMOS technology, the proportion of the leakage power to total power consumption increases. Leakage may account for almost half of total power consumption in high performance processors. In order to reduce the leakage power, there is an increasing interest in using nonvolatile storage devices for memory applications. Among various promising nonvolatile memory elements, spin-transfer torque magnetic RAM (STT-MRAM) is identified as one of the most attractive alternatives to conventional SRAM. However, several design challenges of STT-MRAM such as shared read and write current paths, single-ended sensing, and high dynamic power are major challenges to be overcome to make it suitable for on-chip memories. To mitigate such problems, we propose a domain wall coupling based spin-transfer torque (DWCSTT) device for on-chip caches. Our proposed DWCSTT bit-cell decouples the read and the write current paths by the electrically-insulating magnetic coupling layer so that we can separately optimize read operation without having an impact on write-ability. In addition, the complementary polarizer structure in the read path of the DWCSTT device allows DWCSTT to enable self-referenced differential sensing. DWCSTT bit-cells improve the write power consumption due to the low electrical resistance of the write current path. Furthermore, we also present three different bit-cell level design techniques of Spin-Orbit Torque MRAM (SOT-MRAM) for alleviating some of the inefficiencies of conventional magnetic memories while maintaining the advantages of spin-orbit torque (SOT) based novel switching mechanism such as low write current requirement and decoupled read and write current path. Our proposed SOT-MRAM with supporting dual read/write ports (1R/1W) can address the issue of high-write latency of STT-MRAM by simultaneous 1R/1W accesses. Second, we propose a new type of SOT-MRAM which uses only one access transistor along with a Schottky diode in order to mitigate the area-overhead caused by two access transistors in conventional SOT-MRAM. Finally, a new design technique of SOT-MRAM is presented to improve the integration density by utilizing a shared bit-line structure

    Stochastic-Based Computing with Emerging Spin-Based Device Technologies

    Get PDF
    In this dissertation, analog and emerging device physics is explored to provide a technology platform to design new bio-inspired system and novel architecture. With CMOS approaching the nano-scaling, their physics limits in feature size. Therefore, their physical device characteristics will pose severe challenges to constructing robust digital circuitry. Unlike transistor defects due to fabrication imperfection, quantum-related switching uncertainties will seriously increase their susceptibility to noise, thus rendering the traditional thinking and logic design techniques inadequate. Therefore, the trend of current research objectives is to create a non-Boolean high-level computational model and map it directly to the unique operational properties of new, power efficient, nanoscale devices. The focus of this research is based on two-fold: 1) Investigation of the physical hysteresis switching behaviors of domain wall device. We analyze phenomenon of domain wall device and identify hysteresis behavior with current range. We proposed the Domain-Wall-Motion-based (DWM) NCL circuit that achieves approximately 30x and 8x improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a one bit full adder. 2) Investigation of the physical stochastic switching behaviors of Mag- netic Tunnel Junction (MTJ) device. With analyzing of stochastic switching behaviors of MTJ, we proposed an innovative stochastic-based architecture for implementing artificial neural network (S-ANN) with both magnetic tunneling junction (MTJ) and domain wall motion (DWM) devices, which enables efficient computing at an ultra-low voltage. For a well-known pattern recognition task, our mixed-model HSPICE simulation results have shown that a 34-neuron S-ANN implementation, when compared with its deterministic-based ANN counterparts implemented with digital and analog CMOS circuits, achieves more than 1.5 ~ 2 orders of magnitude lower energy consumption and 2 ~ 2.5 orders of magnitude less hidden layer chip area

    Valley-Spin Hall Effect-based Nonvolatile Memory with Exchange-Coupling-Enabled Electrical Isolation of Read and Write Paths

    Full text link
    Valley-spin hall (VSH) effect in monolayer WSe2 has been shown to exhibit highly beneficial features for nonvolatile memory (NVM) design. Key advantages of VSH-based magnetic random-access memory (VSH-MRAM) over spin orbit torque (SOT)-MRAM include access transistor-less compact bit-cell and low power switching of perpendicular magnetic anisotropy (PMA) magnets. Nevertheless, large device resistance in the read path (RS) due to low mobility of WSe2 and Schottky contacts deteriorates sense margin, offsetting the benefits of VSH-MRAM. To address this limitation, we propose another flavor of VSH-based MRAM that (while inheriting most of the benefits of VSH-MRAM) achieves lower RS in the read path by electrically isolating the read and write terminals. This is enabled by coupling VSH with electrically-isolated but magnetically-coupled PMA magnets via interlayer exchange-coupling. Designing the proposed devices using object oriented micro magnetic framework (OOMMF) simulation, we ensure the robustness of the exchange-coupled PMA system under process variations. To maintain a compact memory footprint, we share the read access transistor across multiple bit-cells. Compared to the existing VSH-MRAMs, our design achieves 39%-42% and 36%-46% reduction in read time and energy, respectively, along with 1.1X-1.3X larger sense margin at a comparable area. This comes at the cost of 1.7X and 2.0X increase in write time and energy, respectively. Thus, the proposed design is suitable for applications in which reads are more dominant than writes

    LOW POWER CIRCUITS DESIGN USING RESISTIVE NON-VOLATILE MEMORIES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Normally-Off Computing Design Methodology Using Spintronics: From Devices to Architectures

    Get PDF
    Energy-harvesting-powered computing offers intriguing and vast opportunities to dramatically transform the landscape of Internet of Things (IoT) devices and wireless sensor networks by utilizing ambient sources of light, thermal, kinetic, and electromagnetic energy to achieve battery-free computing. In order to operate within the restricted energy capacity and intermittency profile of battery-free operation, it is proposed to innovate Elastic Intermittent Computation (EIC) as a new duty-cycle-variable computing approach leveraging the non-volatility inherent in post-CMOS switching devices. The foundations of EIC will be advanced from the ground up by extending Spin Hall Effect Magnetic Tunnel Junction (SHE-MTJ) device models to realize SHE-MTJ-based Majority Gate (MG) and Polymorphic Gate (PG) logic approaches and libraries, that leverage intrinsic-non-volatility to realize middleware-coherent, intermittent computation without checkpointing, micro-tasking, or software bloat and energy overheads vital to IoT. Device-level EIC research concentrates on encapsulating SHE-MTJ behavior with a compact model to leverage the non-volatility of the device for intrinsic provision of intermittent computation and lifetime energy reduction. Based on this model, the circuit-level EIC contributions will entail the design, simulation, and analysis of PG-based spintronic logic which is adaptable at the gate-level to support variable duty cycle execution that is robust to brief and extended supply outages or unscheduled dropouts, and development of spin-based research synthesis and optimization routines compatible with existing commercial toolchains. These tools will be employed to design a hybrid post-CMOS processing unit utilizing pipelining and power-gating through state-holding properties within the datapath itself, thus eliminating checkpointing and data transfer operations

    Heterogeneous Reconfigurable Fabrics for In-circuit Training and Evaluation of Neuromorphic Architectures

    Get PDF
    A heterogeneous device technology reconfigurable logic fabric is proposed which leverages the cooperating advantages of distinct magnetic random access memory (MRAM)-based look-up tables (LUTs) to realize sequential logic circuits, along with conventional SRAM-based LUTs to realize combinational logic paths. The resulting Hybrid Spin/Charge FPGA (HSC-FPGA) using magnetic tunnel junction (MTJ) devices within this topology demonstrates commensurate reductions in area and power consumption over fabrics having LUTs constructed with either individual technology alone. Herein, a hierarchical top-down design approach is used to develop the HSCFPGA starting from the configurable logic block (CLB) and slice structures down to LUT circuits and the corresponding device fabrication paradigms. This facilitates a novel architectural approach to reduce leakage energy, minimize communication occurrence and energy cost by eliminating unnecessary data transfer, and support auto-tuning for resilience. Furthermore, HSC-FPGA enables new advantages of technology co-design which trades off alternative mappings between emerging devices and transistors at runtime by allowing dynamic remapping to adaptively leverage the intrinsic computing features of each device technology. HSC-FPGA offers a platform for fine-grained Logic-In-Memory architectures and runtime adaptive hardware. An orthogonal dimension of fabric heterogeneity is also non-determinism enabled by either low-voltage CMOS or probabilistic emerging devices. It can be realized using probabilistic devices within a reconfigurable network to blend deterministic and probabilistic computational models. Herein, consider the probabilistic spin logic p-bit device as a fabric element comprising a crossbar-structured weighted array. The Programmability of the resistive network interconnecting p-bit devices can be achieved by modifying the resistive states of the array\u27s weighted connections. Thus, the programmable weighted array forms a CLB-scale macro co-processing element with bitstream programmability. This allows field programmability for a wide range of classification problems and recognition tasks to allow fluid mappings of probabilistic and deterministic computing approaches. In particular, a Deep Belief Network (DBN) is implemented in the field using recurrent layers of co-processing elements to form an n x m1 x m2 x ::: x mi weighted array as a configurable hardware circuit with an n-input layer followed by i ≥ 1 hidden layers. As neuromorphic architectures using post-CMOS devices increase in capability and network size, the utility and benefits of reconfigurable fabrics of neuromorphic modules can be anticipated to continue to accelerate
    corecore