84 research outputs found

    DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

    Get PDF
    The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Validation of the multi-segment foot model with bi-planar fluoroscopy

    Get PDF
    A multi-segment foot model (MSFM) is a useful tool for measuring foot joint kinematics although soft-tissue artefact is often present. Quantifying this error is needed to evaluate the accuracy of this model. This study validated the MSFM against bi-planar radiostereometric analysis (RSA) fluoroscopy. Heel-strike, mid-stance, and toe-off events during the stance phase were compared between motion capture and fluoroscopy. Rise/drop of the medial longitudinal arch showed a significant difference (p \u3c 0.05) during toe-off, but no significant difference during heel-strike or mid-stance. Hindfoot supination/pronation and internal/external rotation, and forefoot supination/pronation motions showed no significant difference between the two techniques. The lack of significant difference will allow the MSFM to be used as a sufficiently accurate technique for measuring foot joint motions

    Development and Assessment of a Micro-CT Based System for Quantifying Loaded Knee Joint Kinematics and Tissue Mechanics

    Get PDF
    Although anterior cruciate ligament (ACL) reconstruction is a highly developed surgical procedure, sub-optimal treatment outcomes persist. This can be partially attributed to an incomplete understanding of knee joint kinematics and regional tissue mechanic properties. A system for minimally-invasive investigation of knee joint kinematics and tissue mechanics under clinically relevant joint loads was developed to address this gap in understanding. A five degree-of-freedom knee joint motion simulator capable of dynamically loading intact human cadaveric knee joints to within 1% of user defined multi-axial target loads was developed. This simulator was uniquely designed to apply joint loads to a joint centered within the field of view of a micro-CT scanner. The use of micro-CT imaging and tissue-embedded radiopaque beads demonstrated high-resolution strain measurement, distinguishing differences in inter-bead distances as low as 0.007 mm. Inter-bead strain measurement was highly accurate and repeatable, with no significant error introduced from cyclic joint loading. Finally, regional strain was repeatably measured using radiopaque markers in four intact, human cadaveric knees to within 0.003 strain in response to multi-directional joint loads. This novel combination of dynamic knee joint motion simulation, tissue-embedded radiopaque markers, and micro-CT imaging provides the opportunity to increase our understanding of the kinematics and tissue mechanics of the knee, with the potential to improve ACL reconstruction outcomes

    Computer assisted surgery for fracture reduction and deformity correction of the pelvis and long bones

    Get PDF
    Many orthopaedic operations, for example osteotomies, are not preoperative planned. The operation result depends on the experience of the operating surgeon. In the industry new developments are not longer curried out without CAD planning or computer simulations. Only in medicine the operation technology of corrective osteotomies are still in their infant stage in the last 30 years. Two dimensional analysis is not accurate that results in operation errors in the operating room. The surgeon usually obtains the preoperative information about the current bone state by radiographs. In case of complex operations (also inserting implants) planning is required. Planning based on radiographs has some system-dependent disadvantages like small accuracy, requirement of time for corrections ( distortions due to the projection) and restrictions, if complex corrections are necessary. Today the computer tomography is used as a solution. It is the only modality that allows to reach the accuracy and the resolution required for a good 3D-planning. However its a high dose rate for the patient is the serious disadvantage. Therefore in dilemma between the low dose rate and an adequate planning the first is often preferred. However in future it is expected that good operation results are guarantied only with implementation of 3D-planung. MR systems provide image information too, from which indirectly bones can be extracted. But due to their large distortions (susceptibility, non non-homogeneity of magnetic field), small spatial dissolution and the high costs, it is not expected that MRI represents an alternative in next time. The solution is the use of other image modalities. Ultrasound is here a good compromise both of the costs of the accuracy. In this work I developed an algorithm, which can produce 3D bone models from ultrasonic data. They have good resolution and accuracy compared with CT, and therefore can be used for 3D planning. In the work an improved procedure for segmenting bone surfaces is realised in combination with methods for the fusion for a three-dimensional model. The novelty of the presented work is in new approaches to realising an operation planning system, based on 3D computations, and implementing the intraoperative control by a guided ultrasound system for bone tracking. To realise these ideas the following tasks are solved: - bone modelling from CT data; - real-time extraction of bone surfaces from ultrasound imaging; - tracking the bone with respect to CT bone model. - integrating and implementing the above results in the development of an operation planning system for osteotomy corrections that supports on-line measurements, different types of deformity correction, a bone geometry design and a high level of automation. The developed osteotomy planning system allows to investigate the pathology, makes its analysis, finds an optimal way to realise surgery and provides visual and quantitative information about the results of the virtual operation. Therefore, the implementation of the proposed system can be considered as an additional significant tool for the diagnosis and orthopaedic surgery. The major parts of the planning system are: bone modelling from 3D data derived from CT, MRI or other modalities, visualisation of the elements of the 3D scene in real-time, and the geometric design of bone elements. A high level of automation allows the surgeon to reduce significantly the time of the operation plane development

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO®, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces

    The Effect of Loading, Plantar Ligament Disruption and Surgical Repair on Canine Tarsal Bone Kinematics

    Get PDF
    Our desire to describe the complex kinematic patterns found in nature often exceeds our ability to record, quantify and characterise them. Constantly faced with technological limitations, investigators may attempt to develop new techniques or reduce the complex motions to more simplified models. Perhaps due to technical limitations, the canine pes is commonly considered as a rigid structure, when in reality, this limb segment is comprised of multiple bones and ligaments and motion can readily be demonstrated during palpation. Despite the potentially important role that tarsal bone kinematics may play in energy conservation mechanisms and pathogenesis of injury or disease, there are no descriptions of normal canine tarsal kinematics during locomotion. A radiolucent cadaveric limb loading device was developed and used in conjunction with a computed tomography based kinematic measurement technique to produce the first description of canine tarsal bone kinematics in three dimensions. Tarsal bones were shown to undergo a complex, yet coordinated patterns of motion that facilitate dorsiflexion of the pes in the normal animal. The same technique was applied to specimens following sequential transection of the plantar ligament and revealed the roles of the various components of this ligament. Complete luxation of the proximal intertarsal joint occurred only after transection of the entire ligament, resulting in an inability to transmit force through this limb segment. The final chapter of this thesis, evaluated the ability of a laterally applied bone plate to re-establish force transmission through this limb segment, providing important information that may help to resolve the open question of what the most appropriate surgical repair technique is in these clinical cases

    Insights into the Function on the Knee Meniscus

    Get PDF
    The knee menisci are understood to have a variety of roles including load transmission and stability of the knee joint. To date, there has been no exploration of the role of radial tears of the menisci in inducing kinematic changes in knee joint movement. Furthermore, the function of proteoglycans in maintaining mechanical meniscus has not been explored.Load was applied to cadaveric knees in the intact state and following both a 50% and 100% radial tear of the medial (5 knees) or lateral (6 knees) meniscus. A coordinate system was developed to allow analysis of joint kinematics. Concurrently,confined compression techniques were used to apply 10% strain to meniscal samples from cadavers (30 samples) and patients suffering osteoarthritis (36 samples) in solutions of varying ionic concentration. 7 samples from an Actifit meniscal scaffold were also tested in deionised water. Resultant relaxation curves were fit using finite element modelling techniques. Human tissue samples were assayed for proteoglycan content.Radial tears of the meniscus did not induce significant changes in knee joint kinematics.Finite element modelling demonstrated that the electrostatic effect of proteoglycans contributed to ~40% of the stiffness of the meniscus. No significant difference in proteoglycan content was observed between solutions. The Actifit meniscal scaffold is stiffer than native meniscal tissue but displays similar permeability.Although radial tears do not alter the kinematics of the knee joint, there is evidence they result in abnormal loading of articular cartilage and it is hence important that they are repaired where possible. Proteoglycans play a critical role in maintaining stiffness of the meniscus - current repair strategies such as meniscal scaffolds do not attempt to recreate this function and hence may not prevent cartilage degradation. The stiffness of the Actifit meniscal scaffold may help protect a nascent meniscal repair but may also contribute to abnormal joint loading; its similar permeability will help mimic meniscal function.The knee menisci are understood to have a variety of roles including load transmission and stability of the knee joint. To date, there has been no exploration of the role of radial tears of the menisci in inducing kinematic changes in knee joint movement. Furthermore, the function of proteoglycans in maintaining mechanical meniscus has not been explored.Load was applied to cadaveric knees in the intact state and following both a 50% and 100% radial tear of the medial (5 knees) or lateral (6 knees) meniscus. A coordinate system was developed to allow analysis of joint kinematics. Concurrently,confined compression techniques were used to apply 10% strain to meniscal samples from cadavers (30 samples) and patients suffering osteoarthritis (36 samples) in solutions of varying ionic concentration. 7 samples from an Actifit meniscal scaffold were also tested in deionised water. Resultant relaxation curves were fit using finite element modelling techniques. Human tissue samples were assayed for proteoglycan content.Radial tears of the meniscus did not induce significant changes in knee joint kinematics.Finite element modelling demonstrated that the electrostatic effect of proteoglycans contributed to ~40% of the stiffness of the meniscus. No significant difference in proteoglycan content was observed between solutions. The Actifit meniscal scaffold is stiffer than native meniscal tissue but displays similar permeability.Although radial tears do not alter the kinematics of the knee joint, there is evidence they result in abnormal loading of articular cartilage and it is hence important that they are repaired where possible. Proteoglycans play a critical role in maintaining stiffness of the meniscus - current repair strategies such as meniscal scaffolds do not attempt to recreate this function and hence may not prevent cartilage degradation. The stiffness of the Actifit meniscal scaffold may help protect a nascent meniscal repair but may also contribute to abnormal joint loading; its similar permeability will help mimic meniscal function

    Automated analysis and visualization of preclinical whole-body microCT data

    Get PDF
    In this thesis, several strategies are presented that aim to facilitate the analysis and visualization of whole-body in vivo data of small animals. Based on the particular challenges for image processing, when dealing with whole-body follow-up data, we addressed several aspects in this thesis. The developed methods are tailored to handle data of subjects with significantly varying posture and address the large tissue heterogeneity of entire animals. In addition, we aim to compensate for lacking tissue contrast by relying on approximation of organs based on an animal atlas. Beyond that, we provide a solution to automate the combination of multimodality, multidimensional data.* Advanced School for Computing and Imaging (ASCI), Delft, NL * Bontius Stichting inz Doelfonds Beeldverwerking, Leiden, NL * Caliper Life Sciences, Hopkinton, USA * Foundation Imago, Oegstgeest, NLUBL - phd migration 201

    A Novel Imaging System for Automatic Real-Time 3D Patient-Specific Knee Model Reconstruction Using Ultrasound RF Data

    Get PDF
    This dissertation introduces a novel imaging method and system for automatic real-time 3D patient-specific knee model reconstruction using ultrasound RF data. The developed method uses ultrasound to transcutaneously digitize a point cloud representing the bone’s surface. This point cloud is then used to reconstruct 3D bone model using deformable models method. In this work, three systems were developed for 3D knee bone model reconstruction using ultrasound RF data. The first system uses tracked single-element ultrasound transducer, and was experimented on 12 knee phantoms. An average reconstruction accuracy of 0.98 mm was obtained. The second system was developed using an ultrasound machine which provide real-time access to the ultrasound RF data, and was experimented on 2 cadaveric distal femurs, and proximal tibia. An average reconstruction accuracy of 0.976 mm was achieved. The third system was developed as an extension of the second system, and was used for clinical study of the developed system further assess its accuracy and repeatability. A knee scanning protocol was developed to scan the different articular surfaces of the knee bones to reconstruct 3D model of the bone without the need for bone-implanted motion tracking reference probes. The clinical study was performed on 6 volunteers’ knees. Average reconstruction accuracy of 0.88 mm was achieved with 93.5% repeatability. Three extensions to the developed system were investigated for future work. The first extension is 3D knee injection guidance system. A prototype for the 3D injection guidance system was developed to demonstrate the feasibility of the idea. The second extension in a knee kinematics tracking system using A-mode ultrasound. A simulation framework was developed to study the feasibility of the idea, and to find the best number of single-element ultrasound transducers and their spatial distribution that yield the highest kinematics tracking accuracy. The third extension is 3D cartilage model reconstruction. A preliminary method for cartilage echo detection from ultrasound RF data was developed, and experimented on the distal femur scans of one of the clinical study’s volunteers to reconstruct a 3D point cloud for the cartilage
    corecore