133 research outputs found

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung

    Medical Image Segmentation Review: The success of U-Net

    Full text link
    Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model achieved tremendous attention from academic and industrial researchers. Several extensions of this network have been proposed to address the scale and complexity created by medical tasks. Addressing the deficiency of the naive U-Net model is the foremost step for vendors to utilize the proper U-Net variant model for their business. Having a compendium of different variants in one place makes it easier for builders to identify the relevant research. Also, for ML researchers it will help them understand the challenges of the biological tasks that challenge the model. To address this, we discuss the practical aspects of the U-Net model and suggest a taxonomy to categorize each network variant. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. We provide a comprehensive implementation library with trained models for future research. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation. All information is gathered in https://github.com/NITR098/Awesome-U-Net repository.Comment: Submitted to the IEEE Transactions on Pattern Analysis and Machine Intelligence Journa

    Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS) 2013

    Get PDF
    International audienceBecause of their unpredictable appearance and shape, segmenting brain tumors from multi-modal imaging data is one of the most challenging tasks in medical image analysis. Although many different segmentation strategies have been proposed in the literature, it is hard to compare existing methods because the validation datasets that are used differ widely in terms of input data (structural MR contrasts; perfusion or diffusion data; ...), the type of lesion (primary or secondary tumors; solid or infiltratively growing), and the state of the disease (pre- or post-treatment). In order to gauge the current state-of-the-art in automated brain tumor segmentation and compare between different methods, we are organizing a Multimodal Brain Tumor Image Segmentation (BRATS) challenge that is held in conjunction with the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013) on September 22nd, 2013 in Nagoya, Japan

    Statistical Shape Modelling and Segmentation of the Respiratory Airway

    Get PDF
    The human respiratory airway consists of the upper (nasal cavity, pharynx) and the lower (trachea, bronchi) respiratory tracts. Accurate segmentation of these two airway tracts can lead to better diagnosis and interpretation of airway-specific diseases, and lead to improvement in the localization of abnormal metabolic or pathological sites found within and/or surrounding the respiratory regions. Due to the complexity and the variability displayed in the anatomical structure of the upper respiratory airway along with the challenges in distinguishing the nasal cavity from non-respiratory regions such as the paranasal sinuses, it is difficult for existing algorithms to accurately segment the upper airway without manual intervention. This thesis presents an implicit non-parametric framework for constructing a statistical shape model (SSM) of the upper and lower respiratory tract, capable of distinct shape generation and be adapted for segmentation. An SSM of the nasal cavity was successfully constructed using 50 nasal CT scans. The performance of the SSM was evaluated for compactness, specificity and generality. An averaged distance error of 1.47 mm was measured for the generality assessment. The constructed SSM was further adapted with a modified locally constrained random walk algorithm to segment the nasal cavity. The proposed algorithm was evaluated on 30 CT images and outperformed comparative state-of-the-art and conventional algorithms. For the lower airway, a separate algorithm was proposed to automatically segment the trachea and bronchi, and was designed to tolerate the image characteristics inherent in low-contrast CT images. The algorithm was evaluated on 20 clinical low-contrast CT from PET-CT patient studies and demonstrated better performance (87.1±2.8 DSC and distance error of 0.37±0.08 mm) in segmentation results against comparative state-of-the-art algorithms

    Intraoperative Quantification of Bone Perfusion in Lower Extremity Injury Surgery

    Get PDF
    Orthopaedic surgery is one of the most common surgical categories. In particular, lower extremity injuries sustained from trauma can be complex and life-threatening injuries that are addressed through orthopaedic trauma surgery. Timely evaluation and surgical debridement following lower extremity injury is essential, because devitalized bones and tissues will result in high surgical site infection rates. However, the current clinical judgment of what constitutes “devitalized tissue” is subjective and dependent on surgeon experience, so it is necessary to develop imaging techniques for guiding surgical debridement, in order to control infection rates and to improve patient outcome. In this thesis work, computational models of fluorescence-guided debridement in lower extremity injury surgery will be developed, by quantifying bone perfusion intraoperatively using Dynamic contrast-enhanced fluorescence imaging (DCE-FI) system. Perfusion is an important factor of tissue viability, and therefore quantifying perfusion is essential for fluorescence-guided debridement. In Chapters 3-7 of this thesis, we explore the performance of DCE-FI in quantifying perfusion from benchtop to translation: We proposed a modified fluorescent microsphere quantification technique using cryomacrotome in animal model. This technique can measure bone perfusion in periosteal and endosteal separately, and therefore to validate bone perfusion measurements obtained by DCE-FI; We developed pre-clinical rodent contaminated fracture model to correlate DCE-FI with infection risk, and compare with multi-modality scanning; Furthermore in clinical studies, we investigated first-pass kinetic parameters of DCE-FI and arterial input functions for characterization of perfusion changes during lower limb amputation surgery; We conducted the first in-human use of dynamic contrast-enhanced texture analysis for orthopaedic trauma classification, suggesting that spatiotemporal features from DCE-FI can classify bone perfusion intraoperatively with high accuracy and sensitivity; We established clinical machine learning infection risk predictive model on open fracture surgery, where pixel-scaled prediction on infection risk will be accomplished. In conclusion, pharmacokinetic and spatiotemporal patterns of dynamic contrast-enhanced imaging show great potential for quantifying bone perfusion and prognosing bone infection. The thesis work will decrease surgical site infection risk and improve successful rates of lower extremity injury surgery

    Reconstruction of 3D Neuronal Structures from Densely Packed Electron Microscopy Data Stacks

    Get PDF
    The goal of fully decoding how the brain works requires a detailed wiring diagram of the brain network that reveals the complete connectivity matrix. Recent advances in high-throughput 3D electron microscopy (EM) image acquisition techniques have made it possible to obtain high-resolution 3D imaging data that allows researchers to follow axons and dendrites and to identify pre-synaptic and post-synaptic sites, enabling the reconstruction of detailed neural circuits of the nervous system at the level of synapses. However, these massive data sets pose unique challenges to structural reconstruction because the inevitable staining noise, incomplete boundaries, and inhomogeneous staining intensities increase difficulty of 3D reconstruction and visualization. In this dissertation, a new set of algorithms are provided for reconstruction of neuronal morphology from stacks of serial EM images. These algorithms include (1) segmentation algorithms for obtaining the full geometry of neural circuits, (2) interactive segmentation tools for manual correction of erroneous segmentations, and (3) a validation method for obtaining a topologically correct segmentation when a set of segmentation alternatives are available. Experimental results obtained by using EM images containing densely packed cells demonstrate that (1) the proposed segmentation methods can successfully reconstruct full anatomical structures from EM images, (2) the editing tools provide a way for the user to easily and quickly refine incorrect segmentations, (3) and the validation method is effective in combining multiple segmentation results. The algorithms presented in this dissertation are expected to contribute to the reconstruction of the connectome and to open new directions in the development of reconstruction methods

    Medical Image Analysis using Deep Relational Learning

    Full text link
    In the past ten years, with the help of deep learning, especially the rapid development of deep neural networks, medical image analysis has made remarkable progress. However, how to effectively use the relational information between various tissues or organs in medical images is still a very challenging problem, and it has not been fully studied. In this thesis, we propose two novel solutions to this problem based on deep relational learning. First, we propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation. The network achieves the state-of-the-art segmentation results on the Multi Modal Brain Tumor Segmentation 2017 (BraTS2017) and Multi Modal Brain Tumor Segmentation 2018 (BraTS2018) data sets. Subsequently, we propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames. We use the UCL Fetoscopy Placenta dataset to conduct experiments and our hierarchical homography estimation network outperforms the other state-of-the-art mosaicing methods while generating robust and meaningful mosaicing result on unseen frames.Comment: arXiv admin note: substantial text overlap with arXiv:2007.0778
    • …
    corecore