685 research outputs found

    Multiparametric measurement of cerebral physiology using calibrated fMRI

    Get PDF
    The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments

    Dynamic Assessment of Cerebral Metabolic Rate of Oxygen (cmro2) With Magnetic Resonance Imaging

    Get PDF
    The brain is almost entirely dependent on oxidative metabolism to meet its energy requirements. As such, the cerebral metabolic rate of oxygen (CMRO2) is a direct measure of brain energy use. CMRO2 provides insight into brain functional architecture and has demonstrated potential as a clinical tool for assessing many common neurological disorders. Recent developments in magnetic resonance imaging (MRI)-based CMRO2 quantification have shown promise in spatially resolving CMRO2 in clinically feasible scan times. However, brain energy requirements are both spatially heterogeneous and temporally dynamic, responding to rapid changes in oxygen supply and demand in response to physiologic stimuli and neuronal activation. Methods for dynamic quantification of CMRO2 are lacking, and this dissertation aims to address this gap. Given the fundamental tradeoff between spatial and temporal resolution in MRI, we focus initially on the latter. Central to each proposed method is a model-based approach for deriving venous oxygen saturation (Yv) – the critical parameter for CMRO2 quantification – from MRI signal phase using susceptometry-based oximetry (SBO). First, a three-second-temporal-resolution technique for whole-brain quantification of Yv and CMRO2 is presented. This OxFlow method is applied to measure a small but highly significant increase in CMRO2 in response to volitional apnea. Next, OxFlow is combined with a competing approach for Yv quantification based on blood T2 relaxometry (TRUST). The resulting interleaved-TRUST (iTRUST) pulse sequence greatly improves T2-based CMRO2 quantification, while allowing direct, simultaneous comparison of SBO- and T2-based Yv. iTRUST is applied to assess the CMRO2 response to hypercapnia – a topic of great interest in functional neuroimaging – demonstrating significant biases between SBO- and T2-derived Yv and CMRO2. To address the need for dynamic and spatially resolved CMRO2 quantification, we explore blood-oxygen-level-dependent (BOLD) calibration, introducing a new calibration model and hybrid pulse sequence combining OxFlow with standard BOLD/CBF measurement. Preliminary results suggest Ox-BOLD provides improved calibration “M-maps” for converting BOLD signal to CMRO2. Finally, OxFlow is applied clinically to patients with obstructive sleep apnea (OSA). A small clinical pilot study demonstrates OSA-associated reductions in CMRO2 at baseline and in response to apnea, highlighting the potential utility of dynamic CMRO2 quantification in assessing neuropathology

    A forward modelling approach for the estimation of oxygen extraction fraction by calibrated fMRI

    Get PDF
    The measurement of the absolute rate of cerebral metabolic oxygen consumption (CMRO2) is likely to offer a valuable biomarker in many brain diseases and could prove to be important in our understanding of neural function. As such there is significant interest in developing robust MRI techniques that can quantify CMRO2 non-invasively. One potential MRI method for the measurement of CMRO2 is via the combination of fMRI and cerebral blood flow (CBF) data acquired during periods of hypercapnic and hyperoxic challenges. This method is based on the combination of two, previously independent, signal calibration techniques. As such analysis of the data has been approached in a stepwise manner, feeding the results of one calibration experiment into the next. Analysing the data in this manner can result in unstable estimates of the output parameter (CMRO2), due to the propagation of errors along the analysis pipeline. Here we present a forward modeling approach that estimates all the model parameters in a one-step solution. The method is implemented using a regularized non-linear least squares approach to provide a robust and computationally efficient solution. The proposed framework is compared with previous analytical approaches using modeling studies and in-vivo acquisitions in healthy volunteers (n = 10). The stability of parameter estimates is demonstrated to be superior to previous methods (both in-vivo and in simulation). In-vivo estimates made with the proposed framework also show better agreement with expected physiological variation, demonstrating a strong negative correlation between baseline CBF and oxygen extraction fraction. It is anticipated that the proposed analysis framework will increase the reliability of absolute CMRO2 measurements made with calibrated BOLD

    Calibrated fMRI for mapping absolute CMRO2: practicalities and prospects

    Get PDF
    Functional magnetic resonance imaging (fMRI) is an essential workhorse of modern neuroscience, providing valuable insight into the functional organisation of the brain. The physiological mechanisms underlying the blood oxygenation level dependent (BOLD) effect are complex and preclude a straightforward interpretation of the signal. However, by employing appropriate calibration of the BOLD signal, quantitative measurements can be made of important physiological parameters including the the absolute rate of cerebral metabolic oxygen consumption or oxygen metabolism (CMRO2) and oxygen extraction (OEF). The ability to map such fundamental parameters has the potential to greatly expand the utility of fMRI and to broaden its scope of application in clinical research and clinical practice. In this review article we discuss some of the practical issues related to the calibrated-fMRI approach to the measurement of CMRO2. We give an overview of the necessary precautions to ensure high quality data acquisition, and explore some of the pitfalls and challenges that must be considered as it is applied and interpreted in a widening array of diseases and research questions

    Magnetic resonance imaging of resting cerebral oxygen metabolism : applications in Alzheimer’s disease

    Full text link
    The BOLD contrast employed in functional MRI studies is an ambiguous signal composed of changes in blood flow, blood volume and oxidative metabolism. In situations where the vasculature and metabolism may have been affected, such as in aging and in certain diseases, the dissociation of the more physiologically-specific components from the BOLD signal becomes crucial. The latest generation of calibrated functional MRI methods allows the estimation of both resting blood flow and absolute oxygen metabolism. The work presented here is based on one such proof-of-concept approach, dubbed QUO2, whereby taking into account, within a generalized model, both arbitrary changes in blood flow and blood O2 content during a combination of hypercapnia and hyperoxia breathing manipulations, yields voxel-wise estimates of resting oxygen extraction fraction and oxidative metabolism. In the first part of this thesis, the QUO2 acquisition protocol and data analysis were revisited in order to enhance the temporal stability of individual blood flow and BOLD responses, consequently improving reliability of the model-derived estimates. Thereafter, an assessment of the within and between-subject variability of the optimized QUO2 measurements was performed on a group of healthy volunteers. In parallel, an analysis was performed of the sensitivity of the model to different sources of random and systematic errors, respectively due to errors in measurements and choice of assumed parameters values. Moreover, the various impacts of the oxygen concentration administered during the hyperoxia manipulation were evaluated through a simulation and experimentally, indicating that a mild hyperoxia was beneficial. Finally, the influence of Alzheimer’s disease in vascular and metabolic changes was explored for the first time by applying the QUO2 approach in a cohort of probable Alzheimer’s disease patients and age-matched control group. Voxel-wise and region-wise differences in resting blood flow, oxygen extraction fraction, oxidative metabolism, transverse relaxation rate constant R2* and R2* changes during hypercapnia were identified. A series of limitations along with recommended solutions was given with regards to the delayed transit time, the susceptibility artifacts and the challenge of performing a hypercapnia manipulation in cohorts of elderly and Alzheimer’s patients.Le contraste BOLD employé dans les études d’imagerie par résonance magnétique fonctionnelle (IRMf) provient d’une combinaison ambigüe de changements du flux sanguin cérébral, du volume sanguin ainsi que du métabolisme oxydatif. Dans un contexte où les fonctions vasculaires ou métaboliques du cerveau ont pu être affectées, tel qu’avec l’âge ou certaines maladies, il est crucial d’effectuer une décomposition du signal BOLD en composantes physiologiquement plus spécifiques. La dernière génération de méthodes d’IRMf calibrée permet d’estimer à la fois le flux sanguin cérébral et le métabolisme oxydatif au repos. Le présent travail est basé sur une telle technique, appelée QUantitative O2 (QUO2), qui, via un model généralisé, prend en considération les changements du flux sanguin ainsi que ceux en concentrations sanguine d’O2 durant des périodes d’hypercapnie et d’hyperoxie, afin d’estimer, à chaque voxel, la fraction d’extraction d’oxygène et le métabolisme oxydatif au repos. Dans la première partie de cette thèse, le protocole d’acquisition ainsi que la stratégie d’analyse de l’approche QUO2 ont été revus afin d’améliorer la stabilité temporelle des réponses BOLD et du flux sanguin, conséquemment, afin d’accroître la fiabilité des paramètres estimés. Par la suite, une évaluation de la variabilité intra- et inter-sujet des différentes mesures QUO2 a été effectuée auprès d’un groupe de participants sains. En parallèle, une analyse de la sensibilité du model à différentes sources d’erreurs aléatoires (issues des mesures acquises) et systématiques (dues aux assomptions du model) a été réalisée. De plus, les impacts du niveau d’oxygène administré durant les périodes d’hyperoxie ont été évalués via une simulation puis expérimentalement, indiquant qu’une hyperoxie moyenne était bénéfique. Finalement, l’influence de la maladie d’Alzheimer sur les changements vasculaires et métaboliques a été explorée pour la première fois en appliquant le protocole QUO2 à une cohorte de patients Alzheimer et à un groupe témoin du même âge. Des différences en terme de flux sanguin, fraction d’oxygène extraite, métabolisme oxydatif, et taux de relaxation transverse R2* au repos comme en réponse à l’hypercapnie, ont été identifiées au niveau du voxel, ainsi qu’au niveau de régions cérébrales vulnérables à la maladie d’Alzheimer. Une liste de limitations accompagnées de recommandations a été dressée en ce qui a trait au temps de transit différé, aux artéfacts de susceptibilité magnétique, de même qu’au défi que représente l’hypercapnie chez les personnes âgées ou atteintes de la maladie d’Alzheimer

    Absolute Oxygenation Metabolism Measurements Using Magnetic Resonance Imaging

    Get PDF
    Cerebral oxygen metabolism plays a critical role in maintaining normal function of the brain. It is the primary energy source to sustain neuronal functions. Abnormalities in oxygen metabolism occur in various neuro-pathologic conditions such as ischemic stroke, cerebral trauma, cancer, Alzheimer’s disease and shock. Therefore, the ability to quantitatively measure tissue oxygenation and oxygen metabolism is essential to the understanding of pathophysiology and treatment of various diseases. The focus of this review is to provide an introduction of various blood oxygenation level dependent (BOLD) contrast methods for absolute measurements of tissue oxygenation, including both magnitude and phase image based approaches. The advantages and disadvantages of each method are discussed

    Quantitative functional neuroimaging of cerebral physiology in healthy aging

    Full text link
    Les études d’imagerie par résonance magnétique fonctionnelle (IRMf) ont pour prémisse générale l’idée que le signal BOLD peut être utilisé comme un succédané direct de l’activation neurale. Les études portant sur le vieillissement cognitif souvent comparent directement l’amplitude et l’étendue du signal BOLD entre des groupes de personnes jeunes et âgés. Ces études comportent donc un a priori additionnel selon lequel la relation entre l’activité neurale et la réponse hémodynamique à laquelle cette activité donne lieu restent inchangée par le vieillissement. Cependant, le signal BOLD provient d’une combinaison ambiguë de changements de métabolisme oxydatif, de flux et de volume sanguin. De plus, certaines études ont démontré que plusieurs des facteurs influençant les propriétés du signal BOLD subissent des changements lors du vieillissement. L’acquisition d’information physiologiquement spécifique comme le flux sanguin cérébral et le métabolisme oxydatif permettrait de mieux comprendre les changements qui sous-tendent le contraste BOLD, ainsi que les altérations physiologiques et cognitives propres au vieillissement. Le travail présenté ici démontre l’application de nouvelles techniques permettant de mesurer le métabolisme oxydatif au repos, ainsi que pendant l’exécution d’une tâche. Ces techniques représentent des extensions de méthodes d’IRMf calibrée existantes. La première méthode présentée est une généralisation des modèles existants pour l’estimation du métabolisme oxydatif évoqué par une tâche, permettant de prendre en compte tant des changements arbitraires en flux sanguin que des changements en concentrations sanguine d’O2. Des améliorations en terme de robustesse et de précisions sont démontrées dans la matière grise et le cortex visuel lorsque cette méthode est combinée à une manipulation respiratoire incluant une composante d’hypercapnie et d’hyperoxie. Le seconde technique présentée ici est une extension de la première et utilise une combinaison de manipulations respiratoires incluant l’hypercapnie, l’hyperoxie et l’administration simultanée des deux afin d’obtenir des valeurs expérimentales de la fraction d’extraction d’oxygène et du métabolisme oxydatif au repos. Dans la deuxième partie de cette thèse, les changements vasculaires et métaboliques liés à l’âge sont explorés dans un groupe de jeunes et aînés, grâce au cadre conceptuel de l’IRMf calibrée, combiné à une manipulation respiratoire d’hypercapnie et une tâche modifiée de Stroop. Des changements de flux sanguin au repos, de réactivité vasculaire au CO2 et de paramètre de calibration M ont été identifiés chez les aînés. Les biais affectant les mesures de signal BOLD obtenues chez les participants âgés découlant de ces changements physiologiques sont de plus discutés. Finalement, la relation entre ces changements cérébraux et la performance dans la tâche de Stroop, la santé vasculaire centrale et la condition cardiovasculaire est explorée. Les résultats présentés ici sont en accord avec l’hypothèse selon laquelle une meilleure condition cardiovasculaire est associée à une meilleure fonction vasculaire centrale, contribuant ainsi à l’amélioration de la santé vasculaire cérébrale et cognitive.Functional MRI (fMRI) studies using the BOLD signal are done under the general assumption that the BOLD signal can be used as a direct index of neuronal activation. Studies of cognitive aging often compare BOLD signal amplitude and extent directly between younger and older groups, with the additional assumption that the relationship between neuronal activity and the hemodynamic response is unchanged across the lifespan. However, BOLD signal arises from an ambiguous mixture of changes in oxidative metabolism, blood flow and blood volume. Furthermore, previous studies have shown that several BOLD signal components may be changed during aging. More physiologically-specific information on blood flow and oxidative metabolism would allow a better understanding of these signal changes and of the physiological and cognitive changes seen with aging. The work presented here demonstrates techniques to estimate oxidative metabolism at rest and during performance of a task. These techniques are extensions of previous calibrated fMRI methods and the first method presented is based on a generalization of previous models to take into account both arbitrary changes in blood flow and blood O2 content. The improved robustness and accuracy of this method, when used with a combined hypercapnia and hyperoxia breathing manipulation, is demonstrated in visual cortex and grey matter. The second technique presented builds on the generalization of the model and uses a combination of breathing manipulations including hypercapnia, hyperoxia and both simultaneously, to obtain experimentally-determined values of resting oxygen extraction fraction and oxidative metabolism. In the second part of this thesis, age-related vascular and metabolic changes are explored in a group of younger and older adults using a calibrated fMRI framework with a hypercapnia breathing manipulation and a modified Stroop task. Changes in baseline blood flow, vascular reactivity to the CO2 challenge and calibration parameter M were identified in the older participants. Potential biases in BOLD signal measurements in older adults arising from these physiological changes are discussed. Finally, the relationship between these cerebral changes and performance on the modified Stroop task, central vascular health and cardiovascular fitness are explored. The results of this thesis support the hypothesis that greater cardiovascular fitness is associated with improvements in central vascular function, contributing in turn to improved brain vascular health and cognition

    Assessing microvascular function with breathing maneuvers : an oxygenation-sensitive CMR study

    Get PDF
    Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.This project encompasses five studies, which focus on developing a new cardiovascular diagnostic approach for assessing myocardial oxygenation and microvascular function. In combination with oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging, breathing maneuvers and altered arterial blood gases can be used as a non-invasive method for inducing a vasoactive response to test the oxygenation reserve, a key measurement in vascular function. The number of prescribed cardiac diagnostic tests and interventions is rapidly growing. In particular, imaging and other non-invasive tests are frequently performed prior to invasive procedures. One of the most common uses of cardiac imaging is for the diagnosis of significant coronary artery stenosis, a critical cost factor in today’s health care system. Non-invasive imaging techniques provide the most reliable information for the presence and location of perfusion or oxygenation deficits in patients with symptoms suggestive of myocardial ischemia, yet many current techniques suffer from the need for radiation, contrast agents or tracers, and pharmacological or physical stress protocols. CMR imaging can identify significant coronary artery stenosis without radiation and new trends in CMR research aim to develop diagnostic techniques that do not require any pharmacological stressors or contrast agents. For this project, the primary aim was to develop and test a new diagnostic technique to assess coronary vascular function using OS-CMR in combination with breathing maneuvers as the vasoactive stimulus. Secondary aims then used OS-CMR to assess myocardial oxygenation and the coronary response in the presence of altered arterial blood gases. An animal model was used to validate the vascular response to breathing maneuvers before translating the technique to human subjects into both healthy volunteers, and a patient population with cardiac disease. In the animal models, breathing maneuvers could induce a significant change in invasively measured coronary blood flow and it was demonstrated that in the presence of a haemodynamically significant coronary stenosis, OS-CMR could detect a myocardial oxygen deficit. This technique was then applied in a human model, with healthy participants. In a direct comparison to the infusion of the coronary vasodilator adenosine, which is considered a standard agent for inducing vasodilation in cardiac imaging, breathing maneuvers induced a stronger response in oxygenation of healthy myocardium. The final study then implemented the breathing maneuvers in a patient population with coronary artery disease; in which myocardium compromised by a coronary stenosis had a compromised oxygenation response. Furthermore, the observed effects of arterial blood gases on myocardial oxygenation were assessed. This demonstrated that the coronary response to breath-hold stimuli is attenuated during hyperoxia, and this causes an overall reduction in coronary blood flow, and consequently an oxygenation deficit in a coronary stenosis animal model when supplemental oxygen is provided. In conclusion, this work has improved our understanding of potential new diagnostic techniques for cardiovascular imaging. In particular, it demonstrated that combining breathing maneuvers with oxygenation-sensitive CMR can provide a non-invasive and cost-effective method for assessing global and regional coronary vascular function

    Expanding the role of functional mri in rehabilitation research

    Get PDF
    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) contrast has become a universal methodology in functional neuroimaging. However, the BOLD signal consists of a mix of physiological parameters and has relatively poor reproducibility. As fMRI becomes a prominent research tool for rehabilitation studies involving repeated measures of the human brain, more quantitative and stable fMRI contrasts are needed. This dissertation enhances quantitative measures to complement BOLD fMRI. These additional markers, cerebral blood flow (CBF) and cerebral blood volume (CBV) (and hence cerebral metabolic rate of oxygen (CMROâ‚‚) modeling) are more specific imaging markers of neuronal activity than BOLD. The first aim of this dissertation assesses feasibility of complementing BOLD with quantitative fMRI measures in subjects with central visual impairment. Second, image acquisition and analysis are developed to enhance quantitative fMRI by quantifying CBV while simultaneously acquiring CBF and BOLD images. This aim seeks to relax assumptions related to existing methods that are not suitable for patient populations. Finally, CBF acquisition using a low-cost local labeling coil, which improves image quality, is combined with simultaneous acquisition of two types of traditional BOLD contrast. The demonstrated enhancement of CBF, CBV and CMROâ‚‚measures can lead to better characterization of pathophysiology and treatment effects.Ph.D.Committee Chair: Hu, Xiaoping; Committee Member: Benkeser, Paul; Committee Member: Keilholz, Shella; Committee Member: Sathian, Krish; Committee Member: Schuchard, Ronal
    • …
    corecore