219 research outputs found

    Teleoperation of MRI-Compatible Robots with Hybrid Actuation and Haptic Feedback

    Get PDF
    Image guided surgery (IGS), which has been developing fast recently, benefits significantly from the superior accuracy of robots and magnetic resonance imaging (MRI) which is a great soft tissue imaging modality. Teleoperation is especially desired in the MRI because of the highly constrained space inside the closed-bore MRI and the lack of haptic feedback with the fully autonomous robotic systems. It also very well maintains the human in the loop that significantly enhances safety. This dissertation describes the development of teleoperation approaches and implementation on an example system for MRI with details of different key components. The dissertation firstly describes the general teleoperation architecture with modular software and hardware components. The MRI-compatible robot controller, driving technology as well as the robot navigation and control software are introduced. As a crucial step to determine the robot location inside the MRI, two methods of registration and tracking are discussed. The first method utilizes the existing Z shaped fiducial frame design but with a newly developed multi-image registration method which has higher accuracy with a smaller fiducial frame. The second method is a new fiducial design with a cylindrical shaped frame which is especially suitable for registration and tracking for needles. Alongside, a single-image based algorithm is developed to not only reach higher accuracy but also run faster. In addition, performance enhanced fiducial frame is also studied by integrating self-resonant coils. A surgical master-slave teleoperation system for the application of percutaneous interventional procedures under continuous MRI guidance is presented. The slave robot is a piezoelectric-actuated needle insertion robot with fiber optic force sensor integrated. The master robot is a pneumatic-driven haptic device which not only controls the position of the slave robot, but also renders the force associated with needle placement interventions to the surgeon. Both of master and slave robots mechanical design, kinematics, force sensing and feedback technologies are discussed. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. MRI compatibility is evaluated extensively. Teleoperated needle steering is also demonstrated under live MR imaging. A control system of a clinical grade MRI-compatible parallel 4-DOF surgical manipulator for minimally invasive in-bore prostate percutaneous interventions through the patientĆ¢ā‚¬ā„¢s perineum is discussed in the end. The proposed manipulator takes advantage of four sliders actuated by piezoelectric motors and incremental rotary encoders, which are compatible with the MRI environment. Two generations of optical limit switches are designed to provide better safety features for real clinical use. The performance of both generations of the limit switch is tested. MRI guided accuracy and MRI-compatibility of whole robotic system is also evaluated. Two clinical prostate biopsy cases have been conducted with this assistive robot

    Ultra-High Field Strength MR Image-Guided Robotic Needle Delivery Device for In-Bore Small Animal Interventions

    Get PDF
    Current methods of accurate soft tissue injections in small animals are prone to many sources of error. Although efforts have been made to improve the accuracy of needle deliveries, none of the efforts have provided accurate soft tissue references. An MR image-guided robot was designed to function inside the bore of a 9.4T MR scanner to accurately deliver needles to locations within the mouse brain. The robot was designed to have no noticeable negative effects on the image quality and was localized in the MR images through the use of an MR image visible fiducial. The robot was mechanically calibrated and subsequently validated in an image-guided phantom experiment, where the mean needle targeting accuracy and needle trajectory accuracy were calculated to be 178 Ā± 54Āµm and 0.27 Ā± 0.65Āŗ, respectively. Finally, the device successfully demonstrated an image-guided needle targeting procedure in situ

    Bra.Di.P.O. and P.I.G.R.O.: Innovative Devices for Motor Learning Programs

    Get PDF
    Two mechatronics prototypes, useful for robotic neurotreatments and new clinical trainings, are here presented. P.I.G.R.O. (pneumatic interactive gait rehabilitation orthosis) is an active exoskeleton with an electropneumatic control. It imposes movements on lower limbs in order to produce in the patientā€™s brain proper motor cortex activation. Bra.Di.P.O. (brain discovery pneumatic orthosis) is an MR-compatible device, designed to improve fMRI (functional magnetic resonance imaging) analysis. The two devices are presented together because both are involved in the study of new robotic treatments of patients affected by ictus or brain stroke or in some motor learning experimental investigations carried out on healthy subjects

    Design of a Pneumatic Stepper Motor for MRI Environments

    Get PDF
    Modern medicine promotes the design and creation of innovative ideas. The goal of this project is to further the research in MRI compatible actuators. The proposed actuator design, known as the Pneumatically Ratcheting Stepper Motor (PRiSM), uses directed pneumatic pressure to generate rotational motion. To confirm the validity of this idea, multiple tests were designed and conducted. These tests show that, at 60psi, the PRiSM can operate open-loop with an angular velocity of 7deg/s, while exerting a torque of 435N/mm. Optimized conditions yielded an overall maximum angular velocity of 178deg/s and an overall maximum torque of 747N/mm
    • ā€¦
    corecore