60 research outputs found

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    Inference on Highly-Connected Discrete Graphical Models with Applications to Visual Object Recognition

    Get PDF
    Das Erkennen und Finden von Objekten in Bildern ist eines der wichtigsten Teilprobleme in modernen Bildverarbeitungssystemen. Während die Detektion von starren Objekten aus beliebigen Blickwinkeln vor einigen Jahren noch als schwierig galt, verfolgt die momentane Forschung das Ziel, verformbare, artikulierte Objekte zu erkennen und zu detektieren. Bedingt durch die hohe Varianz innerhalb der Objektklasse, Verdeckungen und Hintergrund mit ähnlichem Aussehen, ist dies jedoch sehr schwer. Des Weiteren wird die Klassifikation der Objekte dadurch erschwert, dass die Beschreibung von ganzheitlichen Modellen häufig in dem dazugehörigen Merkmalsraum keine Cluster bildet. Daher hat sich in den letzten Jahren die Beschreibung von Objekten weg von einem ganzheitlichen hin zu auf Teilen basierenden Modellen verschoben. Dabei wird ein Objekt aus einer Menge von individuellen Teilen zusammen mit Informationen über deren Abhängigkeiten beschrieben. In diesem Zusammenhang stellen wir ein vielseitig anwendbares und erweiterbares Modell zur auf Teilen basierenden Objekterkennung vor. Die Theorie über probabilistische graphische Modelle ermöglicht es, aus manuell notierten Trainingsdaten alle Modellparameter in einer mathematisch fundierten Weise zu lernen. Ein besonderer Augenmerk liegt des Weiteren auf der Berechnung der optimalen Pose eines Objektes in einem Bild. Im probabilistischem Sinne ist dies die Objektbeschreibung mit der maximalen a posteriori Wahrscheinlichkeit (MAP). Das Finden dieser wird auch als das MAP-Problem bezeichnet. Sowohl das Lernen der Modellparameter als auch das Finden der optimalen Objektpose bedingen das Lösen von kombinatorischen Optimierungsproblemen, die in der Regel NP-schwer sind. Beschränkt man sich auf effizient berechenbare Modelle, können viele wichtige Abhängigkeiten zwischen den einzelnen Teilen nicht mehr beschrieben werden. Daher geht die Tendenz in der Modellierung zu generellen Modellen, welche weitaus komplexere Optimierungsprobleme mit sich bringen. In dieser Arbeit schlagen wir zwei neue Methoden zur Lösung des MAP-Problems für generelle diskrete Modelle vor. Unser erster Ansatz transformiert das MAP-Problem in ein Kürzeste-Wege-Problem, welches mittels einer A*-Suche unter Verwendung einer zulässigen Heuristik gelöst wird. Die zulässige Heuristik basiert auf einer azyklisch strukturierter Abschätzung des urspr"unglichen Problems. Da diese Methode für Modelle mit sehr vielen Modellteilen nicht mehr anwendbar ist, betrachten wir alternative Möglichkeiten. Hierzu transformieren wir das kombinatorische Problem unter Zuhilfenahme von exponentiellen Familien in ein lineares Programm. Dies ist jedoch, bedingt durch die große Anzahl von affinen Nebenbedingungen, in dieser Form praktisch nicht lösbar. Daher schlagen wir eine neuartige Zerlegung des MAP Problems in Teilprobleme mit einer k-fan Struktur vor. Alle diese Teilprobleme sind trotz ihrer zyklischen Struktur mit unserer A*-Methode effizient lösbar. Mittels der Lagrange-Methode und dieser Zerlegung erhalten wir bessere Relaxationen als mit der Standardrelaxation über dem lokalen Polytope. In Experimenten auf künstlichen und realen Daten wurden diese Verfahren mit Standardverfahren aus dem Bereich der Bildverarbeitung und kommerzieller Software zum Lösen von lineare und ganzzahlige Optimierungsproblemen verglichen. Abgesehen von Modellen mit sehr vielen Teilen zeigte der A*-Ansatz die besten Ergebnisse im Bezug auf Optimalität und Laufzeit. Auch die auf k-fan Zerlegungen basierenden Methode zeigte viel versprechende Ergebnisse bezüglich der Optimalität, konvergierte jedoch im Allgemeinen sehr langsam

    The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search

    Full text link
    This article presents a new search algorithm for the NP-hard problem of optimizing functions of binary variables that decompose according to a graphical model. It can be applied to models of any order and structure. The main novelty is a technique to constrain the search space based on the topology of the model. When pursued to the full search depth, the algorithm is guaranteed to converge to a global optimum, passing through a series of monotonously improving local optima that are guaranteed to be optimal within a given and increasing Hamming distance. For a search depth of 1, it specializes to Iterated Conditional Modes. Between these extremes, a useful tradeoff between approximation quality and runtime is established. Experiments on models derived from both illustrative and real problems show that approximations found with limited search depth match or improve those obtained by state-of-the-art methods based on message passing and linear programming.Comment: C++ Source Code available from http://hci.iwr.uni-heidelberg.de/software.ph

    A learning framework for higher-order consistency models in multi-class pixel labeling problems

    No full text
    Recently, higher-order Markov random field (MRF) models have been successfully applied to problems in computer vision, especially scene understanding problems. One successful higher-order MRF model for scene understanding is the consistency model [Kohli and Kumar, 2010; Kohli et al., 2009] and earlier work by Ladicky et al. [2009, 2013] which contain higher-order potentials composed of lower linear envelope functions. In semantic image segmentation problems, which seek to identify the pixels of images with pre-defined labels of objects and backgrounds, this model encourages consistent label assignments over segmented regions of images. However, solving this MRF problem exactly is generally NP-hard; instead, efficient approximate inference algorithms are used. Furthermore, the lower linear envelope functions involve a number of parameters to learn. But, the typical cross-validation used for pairwise MRF models is not a practical method for estimating such a large number of parameters. Nevertheless, few works have proposed efficient learning methods to deal with the large number of parameters in these consistency models. In this thesis, we propose a unified inference and learning framework for the consistency model. We investigate various issues and present solutions for inference and learning with this higher-order MRF model as follows. First, we derive two variants of the consistency model for multi-class pixel labeling tasks. Our model defines an energy function scoring any given label assignments over an image. In order to perform Maximum a posteriori (MAP) inference in this model, we minimize the energy function using move-making algorithms in which the higher-order problems are transformed into tractable pairwise problems. Then, we employ a max-margin framework for learning optimal parameters. This learning framework provides a generalized approach for searching the large parameter space. Second, we propose a novel use of the Gaussian mixture model (GMM) for encoding consistency constraints over a large set of pixels. Here, we use various oversegmentation methods to define coherent regions for the consistency potentials. In general, Mean shift (MS) produces locally coherent regions, and GMM provides globally coherent regions, which do not need to be contiguous. Our model exploits both local and global information together and improves the labeling accuracy on real data sets. Accordingly, we use multiple higher-order terms associated with each over-segmentation method. Our learning framework allows us to deal with the large number of parameters involved with multiple higher-order terms. Next, we explore a dual decomposition (DD) method for our multi-class consistency model. The dual decomposition MRF (DD-MRF) is an alternative method for optimizing the energy function. In dual decomposition, a complex MRF problem is decomposed into many easy subproblems and we optimize the relaxed dual problem using a projected subgradient method. At convergence, we expect a global optimum in the dual space because it is a concave maximization problem. To optimize our higher-order DD-MRF exactly, we propose an exact minimization algorithm for solving the higher-order subproblems. Moreover, the minimization algorithm is much more efficient than graph-cuts. The dual decomposition approach also solves the max-margin learning problem by minimizing the dual losses derived from DD-MRF. Here, our minimization algorithm allows us to optimize the DD learning exactly and efficiently, which in most cases finds better parameters than the previous learning approach. Last, we focus on improving labeling accuracies of our higher-order model by combining mid-level features, which we call region features. The region features help customize the general envelope functions for individual segmented regions. By assigning specified weights to the envelope functions, we can choose subsets of highly likely labels for each segmented region. We train multiple classifiers with region features and aggregate them to increase prediction performance of possible labels for each region. Importantly, introducing these region features does not change the previous inference and learning algorithms

    Methods for Inference in Graphical Models

    Get PDF
    Graphical models provide a flexible, powerful and compact way to model relationships between random variables, and have been applied with great success in many domains. Combining prior beliefs with observed evidence to form a prediction is called inference. Problems of great interest include finding a configuration with highest probability (MAP inference) or solving for the distribution over a subset of variables (marginal inference). Further, these methods are often critical subroutines for learning the relationships. However, inference is computationally intractable in general. Hence, much effort has focused on two themes: finding subdomains where exact inference is solvable efficiently, or identifying approximate methods that work well. We explore both these themes, restricting attention to undirected graphical models with discrete variables. First we address exact MAP inference by advancing the recent method of reducing the problem to finding a maximum weight stable set (MWSS) on a derived graph, which, if perfect, admits polynomial time inference. We derive new results for this approach, including a general decomposition theorem for models of any order and number of labels, extensions of results for binary pairwise models with submodular cost functions to higher order, and a characterization of which binary pairwise models can be efficiently solved with this method. This clarifies the power of the approach on this class of models, improves our toolbox and provides insight into the range of tractable models. Next we consider methods of approximate inference, with particular emphasis on the Bethe approximation, which is in widespread use and has proved remarkably effective, yet is still far from being completely understood. We derive new formulations and properties of the derivatives of the Bethe free energy, then use these to establish an algorithm to compute log of the optimum Bethe partition function to arbitrary epsilon-accuracy. Further, if the model is attractive, we demonstrate a fully polynomial-time approximation scheme (FPTAS), which is an important theoretical result, and demonstrate its practical applications. Next we explore ways to tease apart the two aspects of the Bethe approximation, i.e. the polytope relaxation and the entropy approximation. We derive analytic results, show how optimization may be explored over various polytopes in practice, even for large models, and remark on the observed performance compared to the true distribution and the tree-reweighted (TRW) approximation. This reveals important novel observations and helps guide inference in practice. Finally, we present results related to clamping a selection of variables in a model. We derive novel lower bounds on an array of approximate partition functions based only on the model's topology. Further, we show that in an attractive binary pairwise model, clamping any variable and summing over the approximate sub-partition functions can only increase (hence improve) the Bethe approximation, then use this to provide a new, short proof that the Bethe partition function lower bounds the true value for this class of models. The bulk of this work focuses on the class of binary, pairwise models, but several results apply more generally

    Convex relaxation methods for graphical models : Lagrangian and maximum entropy approaches

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 241-257).Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerful and flexible approach to many problems in science and engineering, but also present serious challenges owing to the intractability of optimal inference and estimation over general graphs. In this thesis, we consider convex optimization methods to address two central problems that commonly arise for graphical models. First, we consider the problem of determining the most probable configuration-also known as the maximum a posteriori (MAP) estimate-of all variables in a graphical model, conditioned on (possibly noisy) measurements of some variables. This general problem is intractable, so we consider a Lagrangian relaxation (LR) approach to obtain a tractable dual problem. This involves using the Lagrangian decomposition technique to break up an intractable graph into tractable subgraphs, such as small "blocks" of nodes, embedded trees or thin subgraphs. We develop a distributed, iterative algorithm that minimizes the Lagrangian dual function by block coordinate descent. This results in an iterative marginal-matching procedure that enforces consistency among the subgraphs using an adaptation of the well-known iterative scaling algorithm. This approach is developed both for discrete variable and Gaussian graphical models. In discrete models, we also introduce a deterministic annealing procedure, which introduces a temperature parameter to define a smoothed dual function and then gradually reduces the temperature to recover the (non-differentiable) Lagrangian dual. When strong duality holds, we recover the optimal MAP estimate. We show that this occurs for a broad class of "convex decomposable" Gaussian graphical models, which generalizes the "pairwise normalizable" condition known to be important for iterative estimation in Gaussian models.(cont.) In certain "frustrated" discrete models a duality gap can occur using simple versions of our approach. We consider methods that adaptively enhance the dual formulation, by including more complex subgraphs, so as to reduce the duality gap. In many cases we are able to eliminate the duality gap and obtain the optimal MAP estimate in a tractable manner. We also propose a heuristic method to obtain approximate solutions in cases where there is a duality gap. Second, we consider the problem of learning a graphical model (both the graph and its potential functions) from sample data. We propose the maximum entropy relaxation (MER) method, which is the convex optimization problem of selecting the least informative (maximum entropy) model over an exponential family of graphical models subject to constraints that small subsets of variables should have marginal distributions that are close to the distribution of sample data. We use relative entropy to measure the divergence between marginal probability distributions. We find that MER leads naturally to selection of sparse graphical models. To identify this sparse graph efficiently, we use a "bootstrap" method that constructs the MER solution by solving a sequence of tractable subproblems defined over thin graphs, including new edges at each step to correct for large marginal divergences that violate the MER constraint. The MER problem on each of these subgraphs is efficiently solved using the primaldual interior point method (implemented so as to take advantage of efficient inference methods for thin graphical models). We also consider a dual formulation of MER that minimizes a convex function of the potentials of the graphical model. This MER dual problem can be interpreted as a robust version of maximum-likelihood parameter estimation, where the MER constraints specify the uncertainty in the sufficient statistics of the model. This also corresponds to a regularized maximum-likelihood approach, in which an information-geometric regularization term favors selection of sparse potential representations. We develop a relaxed version of the iterative scaling method to solve this MER dual problem.by Jason K. Johnson.Ph.D

    Rekonstrukcija signala iz nepotpunih merenja sa primenom u ubrzanju algoritama za rekonstrukciju slike magnetne rezonance

    Get PDF
    In dissertation a problem of reconstruction of images from undersampled measurements is considered which has direct application in creation of magnetic resonance images. The topic of the research is proposition of new regularization based methods for image reconstruction which are based on statistical Markov random field models and theory of compressive sensing. With the proposed signal model which follows the statistics of images, a new regularization functions are defined and four methods for reconstruction of magnetic resonance images are derived.У докторској дисертацији разматран је проблем реконструкције сигнала слике из непотпуних мерења који има директну примену у креирању слика магнетне резнонаце. Предмет истраживања је везан за предлог нових регуларизационих метода реконструкције коришћењем статистичких модела Марковљевог случајног поља и теорије ретке репрезентације сигнала. На основу предложеног модела који на веродостојан начин репрезентује статистику сигнала слике предложене су регуларизационе функције и креирана четири алгоритма за реконструкцију слике магнетне резонанце.U doktorskoj disertaciji razmatran je problem rekonstrukcije signala slike iz nepotpunih merenja koji ima direktnu primenu u kreiranju slika magnetne reznonace. Predmet istraživanja je vezan za predlog novih regularizacionih metoda rekonstrukcije korišćenjem statističkih modela Markovljevog slučajnog polja i teorije retke reprezentacije signala. Na osnovu predloženog modela koji na verodostojan način reprezentuje statistiku signala slike predložene su regularizacione funkcije i kreirana četiri algoritma za rekonstrukciju slike magnetne rezonance

    Discrete graphical models -- an optimization perspective

    Full text link
    This monograph is about discrete energy minimization for discrete graphical models. It considers graphical models, or, more precisely, maximum a posteriori inference for graphical models, purely as a combinatorial optimization problem. Modeling, applications, probabilistic interpretations and many other aspects are either ignored here or find their place in examples and remarks only. It covers the integer linear programming formulation of the problem as well as its linear programming, Lagrange and Lagrange decomposition-based relaxations. In particular, it provides a detailed analysis of the polynomially solvable acyclic and submodular problems, along with the corresponding exact optimization methods. Major approximate methods, such as message passing and graph cut techniques are also described and analyzed comprehensively. The monograph can be useful for undergraduate and graduate students studying optimization or graphical models, as well as for experts in optimization who want to have a look into graphical models. To make the monograph suitable for both categories of readers we explicitly separate the mathematical optimization background chapters from those specific to graphical models.Comment: 270 page
    corecore