184 research outputs found

    An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    Get PDF
    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method

    Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Get PDF
    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control

    Neural Controller Utilizing Genetic Algorithm Technique For Dynamic Systems

    Get PDF
    Kajian ini mengemukakan kaedah pembelajaran rangkaian neural (NN) pelbilang lapisan dengan menggunakan teknik algoritma genetik (GA). Teknik evolusionari berasakan GA ini dikaji dan digunakan untuk skima model rujukan kawalan suai (MRAC) bagi loji-loji yang berbeza. This research presents a method of learning multilayer Neural Network (NN) using Genetic Algorithms (GAs) techniques. The evolutionary techniques based on GAs are studied and employed for the Model Reference Adaptive Control (MRAC) scheme of different plants

    Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    Get PDF
    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements

    An AI-based solution for wireless channel interference prediction and wireless remote control

    Get PDF
    Abstract. Most control systems rely on wired connectivity between controllers and plants due to their need for fast and reliable real-time control. Yet the demand for mobility, scalability, low operational and maintenance costs call for wireless networked control system designs. Naturally, over-the-air communication is susceptible to interference and fading and therefore, enabling low latency and high reliability is crucial for wireless control scenarios. In this view, the work of this thesis aims to enhance reliability of the wireless communication and to optimize the energy consumption while maintaining low latency and the stability of the controller-plant system. To achieve this goal, two core abstractions have been used, a neural wireless channel interference predictor and a neural predictive controller. This neural predictor design is motivated by the capability of machine learning in assimilating underlying patterns and dynamics of systems using the observed data. The system model is composed of a controller-plant scheme on which the controller transmits control signals wirelessly. The neural wireless predictor and the neural controller predict wireless channel interference and plant states, respectively. This information is used to optimize energy consumption and prevent communication outages while controlling the plant. This thesis presents the development of the neural wireless predictor, the neural controller and a neural plant. Interaction and functionality of these elements are demonstrated using a Simulink simulation. Results of simulation illustrate the effectiveness of neural networks in both control and wireless domain. The proposed solution yields about 17% reduction in energy consumption compared to state-of-the-art designs by minimizing the impact of interference in the control links while ensuring plant stability

    Issues of Designing a Model Adaptive Controller Without a State Observer

    Get PDF
    It can be challenging to develop a controller using conventional techniques for a plant with a linear or nonlinear dynamical system or model uncertainty. Model adaptive control is a new alternative to classical control techniques and a simple way to update controller parameters. Because model reference adaptive control is unable to anticipate the state in real time if the state observer is not designed with, we will review some of the most major disadvantages of the most commonly used design techniques without state observer in this work

    Certification Considerations for Adaptive Systems

    Get PDF
    Advanced capabilities planned for the next generation of aircraft, including those that will operate within the Next Generation Air Transportation System (NextGen), will necessarily include complex new algorithms and non-traditional software elements. These aircraft will likely incorporate adaptive control algorithms that will provide enhanced safety, autonomy, and robustness during adverse conditions. Unmanned aircraft will operate alongside manned aircraft in the National Airspace (NAS), with intelligent software performing the high-level decision-making functions normally performed by human pilots. Even human-piloted aircraft will necessarily include more autonomy. However, there are serious barriers to the deployment of new capabilities, especially for those based upon software including adaptive control (AC) and artificial intelligence (AI) algorithms. Current civil aviation certification processes are based on the idea that the correct behavior of a system must be completely specified and verified prior to operation. This report by Rockwell Collins and SIFT documents our comprehensive study of the state of the art in intelligent and adaptive algorithms for the civil aviation domain, categorizing the approaches used and identifying gaps and challenges associated with certification of each approach

    Adaptive Systems: History, Techniques, Problems, and Perspectives

    Get PDF
    We survey some of the rich history of control over the past century with a focus on the major milestones in adaptive systems. We review classic methods and examples in adaptive linear systems for both control and observation/identification. The focus is on linear plants to facilitate understanding, but we also provide the tools necessary for many classes of nonlinear systems. We discuss practical issues encountered in making these systems stable and robust with respect to additive and multiplicative uncertainties. We discuss various perspectives on adaptive systems and their role in various fields. Finally, we present some of the ongoing research and expose problems in the field of adaptive control

    Adaptive control of sinusoidal brushless DC motor actuators

    Get PDF
    Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications

    Iso-m based adaptive fractional order control with application to a soft robotic neck

    Get PDF
    This article proposes an adaptive fractional feedback control using recursive least squares algorithm for plant identification and a recent real-time method (iso-m) for fractional controller tuning. The combination of both methods allows keeping the same original performance specifications invariant, combining adaptability and robustness in a single scheme. Thanks to the robust controller, the system performance is maintained around a specified operating point, and due to the adaptive scheme, this operating point is adjusted depending on plant changes. Extensive experimentation of the proposal is carried out in a real platform with non-linear time varying properties, a soft robotic neck made of 3D printer soft materials. The experiments proposed consist in the neck inclination control using tilt sensors installed on the tip. According to expectations, an invariant performance despite plant parameter changes was observed throughout the experiments. The good results obtained in the proposed test platform suggest that the benefits of this control scheme are suitable for other nonlinear time varying applications.This work was supported in part by the Spanish Ministry of Economy and Competitiveness through the Exoesqueleto para Diagnostico y Asistencia en Tareas de Manipulación Spanish Research Project under Grant DPI2016-75346-R and the HUMASOFT Project under Grant DPI2016-75330-P, in part by the Programas de Actividades I+D en la Comunidad de Madrid, RoboCity2030-DIH-CM, through the Madrid Robotics Digital Innovation Hub (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, Fase IV) under Grant S2018/NMT-4331, and in part by the Structural Funds of the EU
    corecore