81 research outputs found

    Design Of An Adaptive Autopilot For An Expendable Launch Vehicle

    Get PDF
    This study investigates the use of a Model Reference Adaptive Control (MRAC) direct approach to solve the attitude control problem of an Expendable Launch Vehicle (ELV) during its boost phase of flight. The adaptive autopilot design is based on Lyapunov Stability Theory and provides a useful means for controlling the ELV in the presence of environmental and dynamical uncertainties. Several different basis functions are employed to approximate the nonlinear parametric uncertainties in the system dynamics. The control system is designed so that the desire dresponse to a reference model would be tracked by the closed-loop system. The reference model is obtained via the feedback linearization technique applied to the nonlinear ELV dynamics. The adaptive control method is then applied to a representative ELV longitudinal motion, specifically the 6th flight of Atlas-Centaur launch vehicle (AC-6) in 1965. The simulation results presented are compared to that of the actual AC-6 post-flight trajectory reconstruction. Recommendations are made for modification and future applications of the method for several other ELV dynamics issues, such as control saturation, engine inertia, flexible body dynamics, and sloshing of liquid fuels

    Design of an Attitude Control System for a Spacecraft with Propellant Slosh Dynamics

    Get PDF
    The presence of propellant slosh dynamics in a spacecraft system during a maneuver leads to attitude control system (ACS) performance degradation resulting in attitude tracking errors and instability. As spacecraft missions become more complex and involve longer durations, a substantial propellant mass is required to achieve the mission objectives and perform orbital maneuvers. When the propellant tanks are only partially filled, the liquid fuel moves inside the tanks with translational and rotational accelerations generating the slosh dynamics. This research effort performs a comparative study with different optimal control techniques and a novel application of a model reference artificial immune system adaptive controller (MRAIS). A linearized model of a realistic spacecraft dynamic model incorporating propellant slosh is derived utilizing the mass-spring analogy. Simulations with the linearized models assist in control law development to achieve the control objective: to suppress the fuel slosh dynamics while obtaining the desired attitude. These control laws are then tested with the nonlinear equations of motion for a spacecraft with propellant slosh dynamics to evaluate the ability of the models to design an attitude control system. Monte Carlo analysis is also applied to characterize the performance of each controller and determine the most significant parameters that cause instability issues. The Model Reference Artificial Immune System has superior performance in comparison to the baseline optimal control systems and is more robust to system instabilities, actuator failures, and aggressive maneuvers

    Adaptive Augmentation of Non-Minimum Phase Flexible Aerospace Systems

    Get PDF
    This work demonstrates the efficacy of direct adaptive augmentation on a robotic flexible system as an analogue of a large flexible aerospace structure such as a launch vehicle or aircraft. To that end, a robot was constructed as a control system testbed. This robot, named “Penny,” contains the command and data acquisition capabilities necessary to influence and record system state data, including the flex states of its flexible structures. This robot was tested in two configurations, one with a vertically cantilevered flexible beam, and one with a flexible inverted pendulum (a flexible cart-pole system). The physical system was then characterized so that linear analysis and control design could be performed. These characterizations resulted in linear and nonlinear models developed for each testing configuration. The linear models were used to design linear controllers to regulate the nominal plant’s dynamical states. These controllers were then augmented with direct adaptive output regulation and disturbance accommodation. To accomplish this, sensor blending was used to shape the output such that the nonminimum phase open loop plant appears to be minimum phase to the controller. It was subsequently shown that augmenting linear controllers with direct adaptive output regulation and disturbance accommodation was effective in enhancing system performance and mitigating oscillation in the flexible structures through the system’s own actuation effort

    Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles

    Get PDF
    Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions

    Direct Adaptive Control for Stability and Command Augmentation System of an Air-Breathing Hypersonic Vehicle

    Get PDF
    In this paper we explore a Direct Adaptive Control scheme for stabilizing a non-linear, physics based model of the longitudinal dynamics for an air breathing hypersonic vehicle. The model, derived from first principles, captures the complex interactions between the propulsion system, aerodynamics, and structural dynamics. The linearized aircraft dynamics show unstable and non-minimum phase behavior. It also shows a strong short period coupling with the fuselage-bending mode. The value added by direct adaptive control and the theoretical requirements for stable convergent operation is displayed. One of the main benefits of the Directive Adaptive Control is that it can be implemented knowing very little detail about the plant. The implementation uses only measured output feedback to accomplish the adaptation. A stability analysis is conducted on the linearized plant to understand the complex aero-propulsion and structural interactions. The multivariable system possesses certain characteristics beneficial to the adaptive control scheme; we discuss these advantages and ideas for future work

    Development of Autonomous Surface Vessels for Hydrographic Survey Applications

    Get PDF
    Autonomously navigating surface vessels have a variety of potential applications for ocean mapping. The use of small vessels for coastal mapping is investigated through the development of hardware and software that form a complete system for survey operations. The hardware is selected to minimize cost while providing flexibility for installation on different platforms. MOOS-IvP open-source autonomy software enables independent operation of the vessel and provides for human monitoring. Custom applications allow the sensors and actuators of the hardware platforms to interface with MOOS-IvP. An autonomy behavior is developed that replicates current human driven survey acquisition, in which the boat plans paths automatically to achieve full survey coverage with a swath sonar system. With initial input of a survey boundary and depths from the onboard sonar system, subsequent paths are planned to be offset based on the collected data. This behavior is tested in simulation and field experiments. A model reference adaptive control system for the heading of the vessel is investigated for improved reliability of vessel operation in a variety of conditions and over the full range of operation speeds. Simulations tests verify the adaptation of two types of controllers. A new method for speed control to increase endurance and decrease engine wear is also proposed and simulated. Together, these developments form an easily configurable system that provides automated hydrographic survey capability to a vessel with minimal human involvement for optimal performance

    Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty

    Get PDF
    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining ‘go-to-goal’, ‘avoid-obstacle’, and ‘follow-wall’ controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor’s nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized second-order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive control (MRAC) controllers are designed and validated through simulations using MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to implement the controllers on the drone. Thirdly, the time delay in the drone’s control system is estimated using analytical and experimental methods. In the experimental approach, the transient properties of the experimental altitude responses are compared to those of simulated responses. The analytical approach makes use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating the time delay. Then an improved system performance is obtained by incorporating the estimated time delay in the design of the PV control system (neutral type) and PV-MRAC control system. Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded type system is studied. This is done by analytically calculating the stability radius of the system. Simulation of the control system is conducted to confirm the stability. This robust control design and uncertainty analysis are conducted for first-order and second-order quadrotor models. Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is found to offer enhanced robustness to the payload fluctuations

    Underactuated Attitude Control of a CubeSat Using Cold Gas Thrusters and Nonlinear Control Methods

    Get PDF
    Impulsive thrusters on small satellites, such as CubeSats, are typically used for attitude control. However, to become more agile, small CubeSats must also look to propulsion systems utilizing impulsive thrusters, such as cold-gas, for translational maneuvers. The combined thrust vector is often misaligned with the system\u27s center of mass resulting in a disturbance torque. This must be counteracted by either an attitude determination and control system (ADCS), additional thrusters, or a control method to keep the satellite\u27s attitude at or near equilibrium. Nonlinearities generated by the impulsive maneuvers are overcome via control techniques explored in this research to include on-off control, sliding mode control, and model reference adaptive control (MRAC). These methods were then compared to a baseline test without thruster modulation, where the reaction wheels must de-saturate prior to continuing the maneuver. For a 1.5 m/s delta-v maneuver, the nonlinear control techniques completed the maneuver nearly 100 times faster than the baseline, while improving pointing accuracy throughout the burn by up to 5%

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example
    corecore