105 research outputs found

    Efficient algorithms for the fast computation of space charge effects caused by charged particles in particle accelerators

    Get PDF
    In this dissertation, a Poisson solver is improved with three parts: the efficient integrated Green's function; the discrete cosine transform of the efficient integrated Green's function values; the implicitly zero-padded fast Fourier transform for charge density. In addition, the high performance computing technology is utilized for the further improvement of efficiency, such as: OpenMP API, OpenMP+CUDA, MPI, and MPI+OpenMP parallelizations. The examples and simulation results are matched with the results of the commonly used Poisson solver to demonstrate the accuracy performance

    Geometric Algorithms and Data Structures for Simulating Diffusion Limited Reactions

    Get PDF
    Radiation therapy is one of the most effective means for treating cancers. An important calculation in radiation therapy is the estimation of dose distribution in the treated patient, which is key to determining the treatment outcome and potential side effects of the therapy. Biological dose — the level of biological damage (e.g., cell killing ratio, DNA damage, etc.) inflicted by the radiation is the best measure of treatment quality, but it is very difficult to calculate. Therefore, most clinics today use physical dose - the energy deposited by incident radiation per unit body mass - for planning radiation therapy, which can be calculated accurately using kinetic Monte Carlo simulations. Studies have found that physical dose correlates with biological dose, but exhibits a very complex relationship that is not yet well understood. Generally speaking, the calculation of biological dose involves four steps: (1) the calculation of physical dose distribution, (2) the generation of radiochemicals based on the physical dose distribution, (3) the simulation of interactions between radiochemicals and bio-matter in the body, and (4) the estimation of biological damage based on the distribution of radiochemicals. This dissertation focuses on the development of a more efficient and effective simulation algorithm to speed up step (3). The main contribution of this research is the development of an efficient and effective kinetic Monte Carlo (KMC) algorithm for simulating diffusion-limited chemical reactions in the context of radiation therapy. The central problem studied is - given n particles distributed among a small number of particle species, all allowed to diffuse and chemically react according to a small number of chemical reaction equations - predict the radiochemical yield over time. The algorithm presented makes use of a sparse grid structure, with one grid per species per radiochemical reactant used to group particles in a way that makes the nearest neighbor search efficient, where particles are stored only once, yet are represented in grids of all appropriate reaction radii. A kinetic data structure is used as the time stepping mechanism, which provides spatially local updates to the simulation at a frequency which captures all events - retaining accuracy. A serial and three parallel versions of the algorithm have been developed. The parallel versions implement the kinetic data structure using both a standard priority queue and a treap data structure in order to investigate the algorithms scalability. The treap provides a way for each thread of execution to do more work in a particular region of space. A comparison with a spatial discretization variant of the algorithm is also provided

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of μs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers

    Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Full text link

    ISCR Annual Report: Fical Year 2004

    Full text link

    Computational Methods in Science and Engineering : Proceedings of the Workshop SimLabs@KIT, November 29 - 30, 2010, Karlsruhe, Germany

    Get PDF
    In this proceedings volume we provide a compilation of article contributions equally covering applications from different research fields and ranging from capacity up to capability computing. Besides classical computing aspects such as parallelization, the focus of these proceedings is on multi-scale approaches and methods for tackling algorithm and data complexity. Also practical aspects regarding the usage of the HPC infrastructure and available tools and software at the SCC are presented

    Finite element method for coupled thermo-hydro-mechanical processes in discretely fractured and non-fractured porous media

    Get PDF
    Numerical analysis of multi-field problems in porous and fractured media is an important subject for various geotechnical engineering tasks such as the management of geo-resources (e.g. engineering of geothermal, oil and gas reservoirs) as well as waste management. For practical usage, e.g. for geothermal, simulation tools are required which take into account both coupled thermo-hydro-mechanical (THM) processes and the uncertainty of geological data, i.e. the model parametrization. For modeling fractured rocks, equivalent porous medium or multiple continuum model approaches are often only the way currently due to difficulty to handle geomechanical discontinuities. However, they are not applicable for prediction of flow and transport in subsurface systems where a few fractures dominates the system behavior. Thus modeling coupled problems in discretely fractured porous media is desirable for more precise analysis. The subject of this work is developing a framework of the finite element method (FEM) for modeling coupled THM problems in discretely fractured and non-fractured porous media including thermal water flow, advective-diffusive heat transport, and thermoporoelasticity. Pre-existing fractures are considered. Systems of discretely fractured porous media can be considered as a problem of interacted multiple domains, i.e. porous medium domain and discrete fracture domain, for hydraulic and transport processes, and a discontinuous problem for mechanical processes. The FEM is required to take into account both kinds of the problems. In addition, this work includes developing a methodology for the data uncertainty using the FEM model and investigating the uncertainty impacts on evaluating coupled THM processes. All the necessary code developments in this work has been carried out with a scientific open source project OpenGeoSys (OGS). In this work, fluid flow and heat transport problems in interactive multiple domains are solved assuming continuity of filed variables (pressure and temperature) over the two domains. The assumption is reasonable if there are no infill materials in fractures. The method has been successfully applied for several numerical examples, e.g. modeling three-dimensional coupled flow and heat transport processes in discretely fractured porous media at the Gross Schoenebck geothermal site (Germany), and three-dimensional coupled THM processes in porous media at the Urach Spa geothermal site (Germany). To solve the mechanically discontinuous problems, lower-dimensional interface elements (LIEs) with local enrichments have been developed for coupled problems in a domain including pre-existing fractures. The method permits the possibility of using existing flow simulators and having an identical mesh for both processes. It enables us to formulate the coupled problems in monolithic scheme for robust computation. Moreover, it gives an advantage in practice that one can use existing standard FEM codes for groundwater flow and easily make a coupling computation between mechanical and hydraulic processes. Example of a 2D fluid injection problem into a single fracture demonstrated that the proposed method can produce results in strong agreement with semi-analytical solutions. An uncertainty analysis of THM coupled processes has been studied for a typical geothermal reservoir in crystalline rock based on the Monte-Carlo method. Fracture and matrix are treated conceptually as an equivalent porous medium, and the model is applied to available data from the Urach Spa and Falkenberg sites (Germany). Reservoir parameters are considered as spatially random variables and their realizations are generated using conditional Gaussian simulation. Two reservoir modes (undisturbed and stimulated) are considered to construct a stochastic model for permeability distribution. We found that the most significant factors in the analysis are permeability and heat capacity. The study demonstrates the importance of taking parameter uncertainties into account for geothermal reservoir evaluation in order to assess the viability of numerical modeling

    Simulación de la evolución de defectos en materiales irradiados de interés en fusión nuclear mediante un método GPU-OKMC

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 28-11-2022As the current world reliance on fossil fuels proves to have catastrophic environmental consequences, which are only exacerbated with a growing world economy and population, a future clean source of energy is required. The scientific community expects nuclear fusion to fulfill this task, in particular magnetically confined fusion. To achieve this, an experimental fusion reactor, the ITER Project, is underway and shall provide the basis for a future demonstration power plant, known as DEMO. One of the most important challenges in the design of a future nuclear fusion reactor is the choice of materials. Materials are subjected to an intense flux of neutrons and heat in a fusion reactor like ITER or, in a much more pronounced way, DEMO. Under irradiation, a large amount of defects are created and, as aconsequence, the properties of materials are severely degraded, and may cause the reactor components to malfunction or break...Dado que la actual dependencia mundial de los combustibles fósiles muestra ciertas consecuencias catastro cas para el medio ambiente, las cuales son magnificadas a medida que crecen la economía y población mundiales, se necesita una fuente de energía limpia para el futuro. La comunidad científica espera que sea la fusión nuclear la que desempeñe este papel, en particular la fusión por confinamiento magnético. Para ello, un reactor de fusión experimental, el Proyecto ITER, esta en marcha y proporcionará las bases para un futuro reactor de demostración llamado DEMO. Uno de los desafíos principales en el diseño de un futuro reactor de fusión es la elección de los materiales. En efecto, los materiales serán sometidos a un flujo intenso de neutrones y calor en un reactor de fusión como ITER; y, de forma más pronunciada, en uno como DEMO. Esto provocara la creación de una gran cantidad de defectos, por lo que las propiedades de los materiales serán gravemente alteradas, y podrán provocar que los componentes del reactor dejen de funcionar correctamente o, incluso, se quiebren...Fac. de Ciencias FísicasTRUEunpu
    • …
    corecore