535 research outputs found

    MPE inference in conditional linear gaussian networks

    Get PDF
    Given evidence on a set of variables in a Bayesian network, the most probable explanation (MPE) is the problem of nding a con guration of the remaining variables with maximum posterior probability. This problem has previously been addressed for discrete Bayesian networks and can be solved using inference methods similar to those used for finding posterior probabilities. However, when dealing with hybrid Bayesian networks, such as conditional linear Gaussian (CLG) networks, the MPE problem has only received little attention. In this paper, we provide insights into the general problem of fi nding an MPE con guration in a CLG network. For solving this problem, we devise an algorithm based on bucket elimination and with the same computational complexity as that of calculating posterior marginals in a CLG network. We illustrate the workings of the algorithm using a detailed numerical example, and discuss possible extensions of the algorithm for handling the more general problem of fi nding a maximum a posteriori hypothesis (MAP)

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    Full text link
    Probabilistic graphical models are a central tool in AI; however, they are generally not as expressive as deep neural models, and inference is notoriously hard and slow. In contrast, deep probabilistic models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion, but still lack the expressive power of intractable models based on deep neural networks. Therefore, we introduce conditional SPNs (CSPNs), conditional density estimators for multivariate and potentially hybrid domains which allow harnessing the expressive power of neural networks while still maintaining tractability guarantees. One way to implement CSPNs is to use an existing SPN structure and condition its parameters on the input, e.g., via a deep neural network. This approach, however, might misrepresent the conditional independence structure present in data. Consequently, we also develop a structure-learning approach that derives both the structure and parameters of CSPNs from data. Our experimental evidence demonstrates that CSPNs are competitive with other probabilistic models and yield superior performance on multilabel image classification compared to mean field and mixture density networks. Furthermore, they can successfully be employed as building blocks for structured probabilistic models, such as autoregressive image models.Comment: 13 pages, 6 figure

    Visualizing and Understanding Sum-Product Networks

    Full text link
    Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.Comment: Machine Learning Journal paper (First Online), 24 page

    Probabilistic Inference for Hybrid Bayesian Networks

    Get PDF
    • …
    corecore