7 research outputs found

    Robust hovering and trajectory tracking control of a quadrotor helicopter using acceleration feedback and a novel disturbance observer

    Get PDF
    Hovering and trajectory tracking control of rotary-wing aircrafts in the presence of uncertainties and external disturbances is a very challenging task. This thesis focuses on the development of the robust hovering and trajectory tracking control algorithms for a quadrotor helicopter subject to both periodic and aperiodic disturbances along with noise and parametric uncertainties. A hierarchical control structure is employed where high-level position controllers produce reference attitude angles for the low-level attitude controllers. Reference attitude angles are usually determined analytically from the position command signals that control the positional dynamics. However, such analytical formulas may produce large and non-smooth reference angles which must be saturated and low-pass filtered. In this thesis, desired attitude angles are determined numerically using constrained nonlinear optimization where certain magnitude and rate constraints are imposed. Furthermore, an acceleration based disturbance observer (AbDOB) is designed to estimate and suppress disturbances acting on the positional dynamics of the quadrotor. For the attitude control, a nested position, velocity, and inner acceleration feedback control structure consisting of PID and PI type controllers are developed to provide high sti ness against external disturbances. Reliable angular acceleration is estimated through an extended Kalman filter (EKF) cascaded with a classical Kalman lter (KF). This thesis also proposes a novel disturbance observer which consists of a bank of band-pass filters connected parallel to the low-pass filter of a classical disturbance observer. Band-pass filters are centered at integer multiples of the fundamental frequency of the periodic disturbance. Number and bandwidth of the band-pass filters are two crucial parameters to be tuned in the implementation of the new structure. Proposed disturbance observer is integrated with a sliding mode controller to tackle the robust hovering and trajectory tracking control problem. The sensitivity of the proposed disturbance observer based control system to the number and bandwidth of the band-pass filters are thoroughly investigated via several simulations. Simulations are carried out on a high delity model where sensor biases and measurement noise are also considered. Results show that the proposed controllers are very effective in providing robust hovering and trajectory tracking performance when the quadrotor helicopter is subject to the wind gusts generated by the Dryden wind model along with plant uncertainties and measurement noise. A comparison with the classical disturbance observer-based control is also provided where better tracking performance with improved robustness is achieved in the presence of noise and external disturbance

    Tracking and Grasping of Moving Objects Using Aerial Robotic Manipulators: A Brief Survey

    Get PDF
    Unmanned Aerial Vehicles (UAV) has evolved in recent years, their features have changed to be more useful to the society, although some years ago the drones had been thought to be teleoperated by humans and to take some pictures from above, which is useful; nevertheless, nowadays the drones are capable of developing autonomous tasks like tracking a dynamic target or even grasping different kind of objects. Some task like transporting heavy loads or manipulating complex shapes are more challenging for a single UAV, but for a fleet of them might be easier. This brief survey presents a compilation of relevant works related to tracking and grasping with aerial robotic manipulators, as well as cooperation among them. Moreover, challenges and limitations are presented in order to contribute with new areas of research. Finally, some trends in aerial manipulation are foreseeing for different sectors and relevant features for these kind of systems are standing out

    A Bayesian optimization framework for the automatic tuning of MPC-based shared controllers

    Full text link
    This paper presents a Bayesian optimization framework for the automatic tuning of shared controllers which are defined as a Model Predictive Control (MPC) problem. The proposed framework includes the design of performance metrics as well as the representation of user inputs for simulation-based optimization. The framework is applied to the optimization of a shared controller for an Image Guided Therapy robot. VR-based user experiments confirm the increase in performance of the automatically tuned MPC shared controller with respect to a hand-tuned baseline version as well as its generalization ability

    ๋น„์„ ํ˜• ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•œ ๋ฉ€ํ‹ฐ๋กœํ„ฐ ํ˜„์ˆ˜ ์šด์†ก์˜ ๊ฒฝ๋กœ ๊ณ„ํš ๋ฐ ์ œ์–ด ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ๊น€ํ˜„์ง„.๊ฒฝ๋กœ ๊ณ„ํš๊ณผ ์ œ์–ด๋Š” ์•ˆ์ „ํ•˜๊ณ  ์•ˆ์ •์ ์œผ๋กœ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์šด์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ถฉ๋Œ์„ ํšŒํ”ผํ•˜๋ฉฐ ํšจ์œจ์ ์ธ ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ์ด๋ฅผ ์‹ค์ œ๋กœ ์ถ”์ข…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋™์—ญํ•™ ๋ชจ๋ธ์ด ๊ณ ๋ ค๋˜์–ด์•ผ ํ•œ๋‹ค. ์ผ๋ฐ˜ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์˜ ๋™์—ญํ•™ ๋ชจ๋ธ์€ ๋†’์€ ์ฐจ์›์„ ๊ฐ€์ง„ ๋น„์„ ํ˜•์‹์œผ๋กœ ํ‘œํ˜„๋˜๋Š”๋ฐ, ํ˜„์ˆ˜ ์šด์†ก ๋ฌผ์ฒด๋ฅผ ์ถ”๊ฐ€ํ•  ๊ฒฝ์šฐ ๊ณ„์‚ฐ์ด ๋”์šฑ ๋ณต์žกํ•ด์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ˜„์ˆ˜ ์šด์†ก์— ์žˆ์–ด ๊ฒฝ๋กœ ๊ณ„ํš๊ณผ ์ œ์–ด์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ ๋‹จ์ผ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ˜„์ˆ˜ ์šด์†ก์„ ๋‹ค๋ฃฌ๋‹ค. ๋ฌผ์ฒด๊ฐ€ ๋ณ„๋„์˜ ์—‘์ธ„์—์ดํ„ฐ ์—†์ด ์šด์†ก๋  ๊ฒฝ์šฐ ๋ฌผ์ฒด๋Š” ๊ธฐ์ฒด์˜ ์›€์ง์ž„์— ์˜ํ•ด์„œ๋งŒ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ๋™์—ญํ•™์‹์˜ ๋†’์€ ๋น„์„ ํ˜•์„ฑ์œผ๋กœ ์šด์šฉ์— ์–ด๋ ค์›€์ด ์กด์žฌํ•œ๋‹ค. ์ด๋ฅผ ๊ฒฝ๊ฐ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ ํšŒ์ „ ๋™์—ญํ•™์‹์˜ ๋น„์„ ํ˜•์„ฑ์„ ์ค„์ด๊ณ  ์ž์„ธ ์ œ์–ด์— ์กด์žฌํ•˜๋Š” ์‹œ๊ฐ„ ์ง€์—ฐ์„ ๊ณ ๋ คํ•˜์—ฌ ๋™์—ญํ•™์‹์„ ๊ฐ„์†Œํ™”ํ•œ๋‹ค. ๊ฒฝ๋กœ ๊ณ„ํš์— ์žˆ์–ด์„œ๋Š” ์ถฉ๋Œ ํšŒํ”ผ๋ฅผ ์œ„ํ•ด ๊ธฐ์ฒด, ์ผ€์ด๋ธ”, ๊ทธ๋ฆฌ๊ณ  ์šด์†ก ๋ฌผ์ฒด๋ฅผ ๋‹ค๋ฅธ ํฌ๊ธฐ์™€ ๋ชจ์–‘์„ ๊ฐ€์ง„ ํƒ€์›์ฒด๋“ค๋กœ ๊ฐ์‹ธ๋ฉฐ, ํšจ๊ณผ์ ์ด๋ฉด์„œ๋„ ๋œ ๋ณด์ˆ˜์ ์ธ ๋ฐฉ์‹์œผ๋กœ ์ถฉ๋Œ ํšŒํ”ผ ๊ตฌ์†์กฐ๊ฑด์„ ๋ถ€๊ณผํ•œ๋‹ค. Augmented Lagrangian ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๋น„์„ ํ˜• ๊ตฌ์†์กฐ๊ฑด์ด ๋ถ€๊ณผ๋œ ๋น„์„ ํ˜• ๋ฌธ์ œ๋ฅผ ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™”ํ•˜์—ฌ ๊ฒฝ๋กœ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ƒ์„ฑ๋œ ๊ฒฝ๋กœ๋ฅผ ์ถ”์ข…ํ•˜๊ธฐ ์œ„ํ•ด์„œ Sequential linear quadratic ์†”๋ฒ„๋ฅผ ์ด์šฉํ•œ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด๊ธฐ๋กœ ์ตœ์  ์ œ์–ด ์ž…๋ ฅ์„ ๊ณ„์‚ฐํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ์—ฌ๋Ÿฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋‹ค์ค‘ ๋ฉ€ํ‹ฐ๋กœํ„ฐ๋ฅผ ์ด์šฉํ•œ ํ˜‘์—… ํ˜„์ˆ˜ ์šด์†ก ์‹œ์Šคํ…œ์„ ๋‹ค๋ฃฌ๋‹ค. ํ•ด๋‹น ์‹œ์Šคํ…œ์˜ ์ƒํƒœ ๋ณ€์ˆ˜๋‚˜ ๋™์—ญํ•™์‹์—์„œ ์—ฐ๊ฒฐ๋œ(coupled) ํ•ญ์˜ ๊ฐœ์ˆ˜๋Š” ๊ธฐ์ฒด์˜ ์ˆ˜์— ๋น„๋ก€ํ•˜์—ฌ ์ฆ๊ฐ€ํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ํšจ๊ณผ์ ์ธ ๊ธฐ๋ฒ• ์—†์ด๋Š” ์ตœ์ ํ™”์— ๋งŽ์€ ์‹œ๊ฐ„์ด ์†Œ์š”๋œ๋‹ค. ๋†’์€ ๋น„์„ ํ˜•์„ฑ์„ ๊ฐ€์ง„ ๋™์—ญํ•™์‹์˜ ๋ณต์žก์„ฑ์„ ๋‚ฎ์ถ”๊ธฐ ์œ„ํ•˜์—ฌ ๋ฏธ๋ถ„ ํ‰ํƒ„์„ฑ์„ ์‚ฌ์šฉํ•œ๋‹ค. ๊ฒฝ๋กœ ๋˜ํ•œ piece-wise Bernstein ๋‹คํ•ญ์‹์„ ์ด์šฉํ•˜์—ฌ ๋งค๊ฐœ๋ณ€์ˆ˜ํ™”ํ•˜์—ฌ ์ตœ์ ํ™” ๋ณ€์ˆ˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ค„์ธ๋‹ค. ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋ถ„ํ•ดํ•˜๊ณ  ์ถฉ๋Œ ํšŒํ”ผ ๊ตฌ์†์กฐ๊ฑด๋“ค์— ๋Œ€ํ•ด ๋ณผ๋กํ™”(convexification)๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ ์šด์†ก ๋ฌผ์ฒด์˜ ๊ฒฝ๋กœ์™€ ์žฅ๋ ฅ์˜ ๊ฒฝ๋กœ์— ๋Œ€ํ•œ ๋ณผ๋กํ•œ(convex) ํ•˜์œ„๋ฌธ์ œ๋“ค์ด ๋งŒ๋“ค์–ด์ง„๋‹ค. ์ฒซ ๋ฒˆ์งธ ํ•˜์œ„๋ฌธ์ œ์ธ ๋ฌผ์ฒด ๊ฒฝ๋กœ ์ƒ์„ฑ์—์„œ๋Š”, ์žฅ์• ๋ฌผ ํšŒํ”ผ์™€ ๋ฉ€ํ‹ฐ๋กœํ„ฐ์˜ ๊ณต๊ฐ„์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์•ˆ์ „ ๋น„ํ–‰ ํ†ต๋กœ(safe flight corridor, SFC)์™€ ์—ฌ์œ  ๊ฐ„๊ฒฉ ๊ตฌ์†์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์ตœ์ ํ™”ํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์žฅ๋ ฅ ๋ฒกํ„ฐ๋“ค์˜ ๊ฒฝ๋กœ๋Š” ์žฅ์• ๋ฌผ ํšŒํ”ผ์™€ ์ƒํ˜ธ ์ถฉ๋Œ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์•ˆ์ „ ๋น„ํ–‰ ์„นํ„ฐ(safe flight sector, SFS)์™€ ์ƒ๋Œ€ ์•ˆ์ „ ๋น„ํ–‰ ์„นํ„ฐ(relative safe flight sector, RSFS) ๊ตฌ์†์กฐ๊ฑด์„ ๋ถ€๊ณผํ•˜์—ฌ ์ตœ์ ํ™”ํ•œ๋‹ค. ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ์‹คํ—˜์œผ๋กœ ๋ณต์žกํ•œ ํ™˜๊ฒฝ์—์„œ ํšจ์œจ์ ์ธ ๊ฒฝ๋กœ ๊ณ„ํš ๊ธฐ๋ฒ•์„ ์‹œ์—ฐํ•˜๋ฉฐ ๊ฒ€์ฆํ•œ๋‹ค.Trajectory generation and control are fundamental requirements for safe and stable operation of multi-rotors. The dynamic model should be considered to generate efficient and collision-free trajectories with feasibility. While the dynamic model of a bare multi-rotor is expressed non-linearly with high dimensions which results in computational loads, the suspended load increases the complexity further. This dissertation presents efficient algorithms for trajectory generation and control of multi-rotors with a suspended load. A single multi-rotor with a suspended load is addressed first. Since the load is suspended through a cable without any actuator, movement of the load must be controlled via maneuvers of the multi-rotor. However, the highly non-linear dynamics of the system results in difficulties. To relive them, the rotational dynamics is simplified to reduce the non-linearity and consider the delay in attitude control. For trajectory generation, the vehicle, cable, and load are considered as ellipsoids with different sizes and shapes, and collision-free constraints are expressed in an efficient and less-conservative way. The augmented Lagrangian method is applied to solve a nonlinear optimization problem with nonlinear constraints in real-time. Model predictive control with the sequential linear quadratic solver is used to track the generated trajectories. The proposed algorithm is validated with several simulations and experiment. A system with multiple multi-rotors for cooperative transportation of a suspended load is addressed next. As the system has more state variables and coupling terms in the dynamic equation than the system with a single multi-rotor, optimization takes a long time without an efficient method. The differential flatness of the system is used to reduce the complexity of the highly non-linear dynamic equation. The trajectories are also parameterized using piece-wise Bernstein polynomials to decrease the number of optimization variables. By decomposing an optimization problem and performing convexification, convex sub-problems are formulated for the load and the tension trajectories optimization, respectively. In each sub-problem, a light-weight sampling method is used to find a feasible and low-cost trajectory as initialization. In the first sub-problem, the load trajectory is optimized with safe flight corridor (SFC) and clearance constraints for collision avoidance and security of space for the multi-rotors. Then, the tension histories are optimized with safe flight sector (SFS) and relative safe flight sector (RSFS) constraints for obstacle and inter-agent collision avoidance. Simulations and experiments are conducted to demonstrate efficient trajectory generation in a cluttered environment and validate the proposed algorithms.Chapter 1 Introduction 1 1.1 Literature Survey 5 1.2 Contributions 9 1.3 Outline 10 Chapter 2 Single Multi-rotor with a Suspended Load 11 2.1 Dynamics 11 2.2 Trajectory Generation 23 2.3 Optimal Control 31 Chapter 3 Multiple Multi-rotors with a Suspended Load 36 3.1 Problem Setting 36 3.2 Load Trajectory Generation 45 3.3 Tension History Generation 54 Chapter 4 Experimental Validation 68 4.1 Single Multi-rotor with a Suspended Load 68 4.2 Multiple Multi-rotors with a Suspended Load 79 Chapter 5 Conclusion 100 Appendix A Detailed Derivation of Dierential Flatness 102 B Preliminaries of Bernstein Polynomials 108 B.1 Denition of a Bernstein Polynomial 108 B.2 Convex hull property of a Bernstein Polynomial 110 B.3 Representation of a General Polynomial with Bernstein Basis Polynomials 111 B.4 Representation of the Derivative of a Bernstein Polynomial with Bernstein Basis Polynomials 112 References 113 Abstract (in Korean) 119๋ฐ•

    A Human-Embodied Drone for Dexterous Aerial Manipulation

    Full text link
    Current drones perform a wide variety of tasks in surveillance, photography, agriculture, package delivery, etc. However, these tasks are performed passively without the use of human interaction. Aerial manipulation shifts this paradigm and implements drones with robotic arms that allow interaction with the environment rather than simply sensing it. For example, in construction, aerial manipulation in conjunction with human interaction could allow operators to perform several tasks, such as hosing decks, drill into surfaces, and sealing cracks via a drone. This integration with drones will henceforth be known as dexterous aerial manipulation. Our recent work integrated the workerโ€™s experience into aerial manipulation using haptic technology. The net effect was such a system could enable the worker to leverage drones and complete tasks while utilizing haptics on the task site remotely. However, the tasks were completed within the operatorโ€™s line-of-sight. Until now, immersive AR/VR frameworks has rarely been integrated in aerial manipulation. Yet, such a framework allows the drones to embody and transport the operatorโ€™s senses, actions, and presence to a remote location in real-time. As a result, the operator can both physically interact with the environment and socially interact with actual workers on the worksite. This dissertation presents a human-embodied drone interface for dexterous aerial manipulation. Using VR/AR technology, the interface allows the operator to leverage their intelligence to collaboratively perform desired tasks anytime, anywhere with a drone that possesses great dexterity

    Motion Planning of UAV Swarm: Recent Challenges and Approaches

    Get PDF
    The unmanned aerial vehicle (UAV) swarm is gaining massive interest for researchers as it has huge significance over a single UAV. Many studies focus only on a few challenges of this complex multidisciplinary group. Most of them have certain limitations. This paper aims to recognize and arrange relevant research for evaluating motion planning techniques and models for a swarm from the viewpoint of control, path planning, architecture, communication, monitoring and tracking, and safety issues. Then, a state-of-the-art understanding of the UAV swarm and an overview of swarm intelligence (SI) are provided in this research. Multiple challenges are considered, and some approaches are presented. Findings show that swarm intelligence is leading in this era and is the most significant approach for UAV swarm that offers distinct contributions in different environments. This integration of studies will serve as a basis for knowledge concerning swarm, create guidelines for motion planning issues, and strengthens support for existing methods. Moreover, this paper possesses the capacity to engender new strategies that can serve as the grounds for future work

    Towards autonomy of a quadrotor UAV

    Get PDF
    As the potential of unmanned aerial vehicles rapidly increases, there is a growing interest in rotary vehicles as well as fixed wing. The quadrotor is small agile rotary vehicle controlled by variable speed prop rotors. With no need for a swash plate the vehicle is low cost as well as dynamically simple. In order to achieve autonomous flight, any potential control algorithm must include trajectory generation and trajectory following. Trajectory generation can be done using direct or indirect methods. Indirect methods provide an optimal solution but are hard to solve for anything other than the simplest of cases. Direct methods in comparison are often sub-optimal but can be applied to a wider range of problems. Trajectory optimization is typically performed within the control space, however, by posing the problem in the output space, the problem can be simplified. Differential flatness is a property of some dynamical systems which allows dynamic inversion and hence, output space optimization. Trajectory following can be achieved through any number of linear control techniques, this is demonstrated whereby a single trajectory is followed using LQR, this scheme is limited however, as the vehicle is unable to adapt to environmental changes. Model based predictive control guarantees constraint satisfaction at every time step, this however is time consuming and therefore, a combined controller is proposed benefiting from the adaptable nature of MBPC and the robustness and simplicity of LQR control. There are numerous direct methods for trajectory optimization both in the output and control space. Taranenkoโ€™s direct method has a number of benefits over other techniques, including the use of a virtual argument, which separates the optimal path and the speed problem. This enables the algorithm to solve the optimal time problem, the optimal fuel problem or a combination of the two, without a deviation from the optimal path. In order to implement such a control scheme, the issues of feedback, communication and control action computation, require consideration. This work discusses the issues with instrumentation and communication encountered when developing the control system and provides open loop test results. This work also extends the proposed control schemes to consider the problem of multiple vehicle flight rendezvous. Specifically the problem of rendezvous when there is no communication link, limited visibility and no agreed rendezvous point. Using Taranenkoโ€™s direct method multiple vehicle rendezvous is simulated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore