1,947 research outputs found

    MODIS Science Algorithms and Data Systems Lessons Learned

    Get PDF
    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions

    MODIS Radiometric Calibration Program, Methods and Results

    Get PDF
    As a key instrument for NASA s Earth Observing System (EOS), the Moderate Resolution Imaging Spectroradiometer (MODIS) has made significant contributions to the remote sensing community with its unprecedented amount of data products continuously generated from its observations and freely distributed to users worldwide. MODIS observations, covering spectral regions from visible (VIS) to long-wave infrared (LWIR), have enabled a broad range of research activities and applications for studies of the earth s interactive system of land, oceans, and atmosphere. In addition to extensive pre-launch measurements, developed to characterize sensor performance, MODIS carries a set of on-board calibrators (OBC) that can be used to track on-orbit changes of various sensor characteristics. Most importantly, dedicated and continuous calibration efforts have been made to maintain sensor data quality. This paper provides an overview of the MODIS calibration program, on-orbit calibration activities, methods, and performance. Key calibration results and lessons learned from the MODIS calibration effort are also presented in this paper

    On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands

    Get PDF
    Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra MODIS and the mirror side differences are much smaller. Overall, Aqua MODIS RSB on-orbit performance is better than Terra MODIS

    Post-Launch Calibration Support for VIIRS Onboard NASA NPP Spacecraft

    Get PDF
    The NPP Instrument Calibration Support Element (NICSE) is one of the elements within the NASA NPP Science Data Segment (SDS). The primary responsibility of NICSE is to independently monitor and evaluate on-orbit radiometric and geometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument and to validate its Sensor Data Record (SDR) [1]. The NICSE interacts and works closely with other SDS Product Evaluation and Analysis Tools Elements (PEATE) and the NPP Science Team (ST) and supports their on-orbit data product calibration and validation efforts. The NICSE also works closely with the NPP Instrument Calibration Support Team (NICST) during sensor pre-launch testing in ambient and thermal vacuum environment [2]. This paper provides an overview of NICSE VIIRS sensor post-launch calibration support with a focus on the use of sensor on-board calibrators (OBC) for the radiometric calibration and characterization. It presents the current status of NICSE post-launch radiometric calibration tool development effort based on its design requirement

    Status of Aqua MODIS On-orbit Calibration and Characterization

    Get PDF
    The MODIS Flight Model 1 (FM1) has been in operation for more than two years since its launch onboard the NASA's Earth Observing System (EOS) Aqua spacecraft on May 4, 2002. The MODIS has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.2 micron and 16 thermal emissive bands (TEB) from 3.7 to 14.5 micron. It provides the science community observations (data products) of the Earth's land, oceans, and atmosphere for a board range of applications. Its primary on-orbit calibration and characterization activities are performed using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a blackbody for the TEB. Another on-board calibrator (OBC) known as the spectro-radiometric calibration assembly (SRCA) is used for the instrument's spatial (TEB and RSB) and spectral (RSB only) characterization. We present in this paper the status of Aqua MODIS calibration and characterization during its first two years of on-orbit operation. Discussions will be focused on the calibration activities executed on-orbit in order to maintain and enhance the instrument's performance and the quality of its Level 1B (L1B) data products. We also provide comparisons between Aqua MODIS and Terra MODIS (launched in December, 1999), including their similarity and difference in response trending and optics degradation. Existing data and results show that Aqua MODIS bands 8 (0.412 micron) and 9 (0.443 micron) have much smaller degradation than Terra MODIS bands 8 and 9. The most noticeable feature shown in the RSB trending is that the mirror side differences in Aqua MODIS are extremely small and stable (<0.1%) while the Terra MODIS RSB trending has shown significant mirror side difference and wavelength dependent degradation. The overall stability of the Aqua MODIS TEB is also better than that of the Terra MODIS during their first two years of on-orbit operation

    Summary of Terra and Aqua MODIS Long-Term Performance

    Get PDF
    Since launch in December 1999, the MODIS ProtoFlight Model (PFM) onboard the Terra spacecraft has successfully operated for more than 11 years. Its Flight Model (FM) onboard the Aqua spacecraft, launched in May 2002, has also successfully operated for over 9 years. MODIS observations are made in 36 spectral bands at three nadir spatial resolutions and are calibrated and characterized regularly by a set of on-board calibrators (OBC). Nearly 40 science products, supporting a variety of land, ocean, and atmospheric applications, are continuously derived from the calibrated reflectances and radiances of each MODIS instrument and widely distributed to the world-wide user community. Following an overview of MODIS instrument operation and calibration activities, this paper provides a summary of both Terra and Aqua MODIS long-term performance. Special considerations that are critical to maintaining MODIS data quality and beneficial for future missions are also discussed

    VIIRS On-Orbit Optical Anomaly - Investigation, Analysis, Root Cause Determination and Lessons Learned

    Get PDF
    A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the lessons learned section of this paper

    MODIS Land Data Products: Generation, Quality Assurance and Validation

    Get PDF
    The Moderate Resolution Imaging Spectrometer (MODIS) on-board NASA's Earth Observing System (EOS) Terra and Aqua Satellites are key instruments for providing data on global land, atmosphere, and ocean dynamics. Derived MODIS land, atmosphere and ocean products are central to NASA's mission to monitor and understand the Earth system. NASA has developed and generated on a systematic basis a suite of MODIS products starting with the first Terra MODIS data sensed February 22, 2000 and continuing with the first MODIS-Aqua data sensed July 2, 2002. The MODIS Land products are divided into three product suites: radiation budget products, ecosystem products, and land cover characterization products. The production and distribution of the MODIS Land products are described, from initial software delivery by the MODIS Land Science Team, to operational product generation and quality assurance, delivery to EOS archival and distribution centers, and product accuracy assessment and validation. Progress and lessons learned since the first MODIS data were in early 2000 are described

    Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    Get PDF
    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire missio

    An Intelligent Archive Testbed Incorporating Data Mining

    Get PDF
    Many significant advances have occurred during the last two decades in remote sensing instrumentation, computation, storage, and communication technology. A series of Earth observing satellites have been launched by U.S. and international agencies and have been operating and collecting global data on a regular basis. These advances have created a data rich environment for scientific research and applications. NASA s Earth Observing System (EOS) Data and Information System (EOSDIS) has been operational since August 1994 with support for pre-EOS data. Currently, EOSDIS supports all the EOS missions including Terra (1999), Aqua (2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively capturing, processing and archiving several terabytes of standard data products each day. It has also been distributing these data products at a rate of several terabytes per day to a diverse and globally distributed user community (Ramapriyan et al. 2009). There are other NASA-sponsored data system activities including measurement-based systems such as the Ocean Data Processing System and the Precipitation Processing system, and several projects under the Research, Education and Applications Solutions Network (REASoN), Making Earth Science Data Records for Use in Research Environments (MEaSUREs), and the Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) programs. Together, these activities provide a rich set of resources constituting a value chain for users to obtain data at various levels ranging from raw radiances to interdisciplinary model outputs. The result has been a significant leap in our understanding of the Earth systems that all humans depend on for their enjoyment, livelihood, and survival. The trend in the community today is towards many distributed sets of providers of data and services. Despite this, visions for the future include users being able to locate, fuse and utilize data with location transparency and high degree of interoperability, and being able to convert data to information and usable knowledge in an efficient, convenient manner, aided significantly by automation (Ramapriyan et al. 2004; NASA 2005). We can look upon the distributed provider environment with capabilities to convert data to information and to knowledge as an Intelligent Archive in the Context of a Knowledge Building system (IA-KBS). Some of the key capabilities of an IA-KBS are: Virtual Product Generation, Significant Event Detection, Automated Data Quality Assessment, Large-Scale Data Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Requesting (Ramapriyan et al. 2004)
    • …
    corecore