514 research outputs found

    No-reference bitstream-based visual quality impairment detection for high definition H.264/AVC encoded video sequences

    Get PDF
    Ensuring and maintaining adequate Quality of Experience towards end-users are key objectives for video service providers, not only for increasing customer satisfaction but also as service differentiator. However, in the case of High Definition video streaming over IP-based networks, network impairments such as packet loss can severely degrade the perceived visual quality. Several standard organizations have established a minimum set of performance objectives which should be achieved for obtaining satisfactory quality. Therefore, video service providers should continuously monitor the network and the quality of the received video streams in order to detect visual degradations. Objective video quality metrics enable automatic measurement of perceived quality. Unfortunately, the most reliable metrics require access to both the original and the received video streams which makes them inappropriate for real-time monitoring. In this article, we present a novel no-reference bitstream-based visual quality impairment detector which enables real-time detection of visual degradations caused by network impairments. By only incorporating information extracted from the encoded bitstream, network impairments are classified as visible or invisible to the end-user. Our results show that impairment visibility can be classified with a high accuracy which enables real-time validation of the existing performance objectives

    Ad-hoc Stream Adaptive Protocol

    Get PDF
    With the growing market of smart-phones, sophisticated applications that do extensive computation are common on mobile platform; and with consumers’ high expectation of technologies to stay connected on the go, academic researchers and industries have been making efforts to find ways to stream multimedia contents to mobile devices. However, the restricted wireless channel bandwidth, unstable nature of wireless channels, and unpredictable nature of mobility, has been the major road block for wireless streaming advance forward. In this paper, various recent studies on mobility and P2P system proposal are explained and analyzed, and propose a new design based on existing P2P systems, aimed to solve the wireless and mobility issues

    Reliable real-time stream distribution using an Internet multicast overlay

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaf 34).A real-time peer-to-peer stream distribution system is proposed. Distribution network adapts over time as users are added and removed, as well as due to changing network conditions. Every node both receives and forwards traffic, cooperating to minimize the bandwidth requirement on the source. The goal is to demonstrate that such a system is feasible, and that it can reduce the resource requirements of special purpose broadcasting.by Ilia Mirkin.M.Eng

    Non-convex resource allocation in communication networks

    Get PDF
    The continuously growing number of applications competing for resources in current communication networks highlights the necessity for efficient resource allocation mechanisms to maximize user satisfaction. Optimization Theory can provide the necessary tools to develop such mechanisms that will allocate network resources optimally and fairly among users. However, the resource allocation problem in current networks has characteristics that turn the respective optimization problem into a non-convex one. First, current networks very often consist of a number of wireless links, whose capacity is not constant but follows Shannon capacity formula, which is a non-convex function. Second, the majority of the traffic in current networks is generated by multimedia applications, which are non-concave functions of rate. Third, current resource allocation methods follow the (bandwidth) proportional fairness policy, which when applied to networks shared by both concave and non-concave utilities leads to unfair resource allocations. These characteristics make current convex optimization frameworks inefficient in several aspects. This work aims to develop a non-convex optimization framework that will be able to allocate resources efficiently for non-convex resource allocation formulations. Towards this goal, a necessary and sufficient condition for the convergence of any primal-dual optimization algorithm to the optimal solution is proven. The wide applicability of this condition makes this a fundamental contribution for Optimization Theory in general. A number of optimization formulations are proposed, cases where this condition is not met are analysed and efficient alternative heuristics are provided to handle these cases. Furthermore, a novel multi-sigmoidal utility shape is proposed to model user satisfaction for multi-tiered multimedia applications more accurately. The advantages of such non-convex utilities and their effect in the optimization process are thoroughly examined. Alternative allocation policies are also investigated with respect to their ability to allocate resources fairly and deal with the non-convexity of the resource allocation problem. Specifically, the advantages of using Utility Proportional Fairness as an allocation policy are examined with respect to the development of distributed algorithms, their convergence to the optimal solution and their ability to adapt to the Quality of Service requirements of each application

    Efficient algorithms for passive network measurement

    Get PDF
    Network monitoring has become a necessity to aid in the management and operation of large networks. Passive network monitoring consists of extracting metrics (or any information of interest) by analyzing the traffic that traverses one or more network links. Extracting information from a high-speed network link is challenging, given the great data volumes and short packet inter-arrival times. These difficulties can be alleviated by using extremely efficient algorithms or by sampling the incoming traffic. This work improves the state of the art in both these approaches. For one-way packet delay measurement, we propose a series of improvements over a recently appeared technique called Lossy Difference Aggregator. A main limitation of this technique is that it does not provide per-flow measurements. We propose a data structure called Lossy Difference Sketch that is capable of providing such per-flow delay measurements, and, unlike recent related works, does not rely on any model of packet delays. In the problem of collecting measurements under the sliding window model, we focus on the estimation of the number of active flows and in traffic filtering. Using a common approach, we propose one algorithm for each problem that obtains great accuracy with significant resource savings. In the traffic sampling area, the selection of the sampling rate is a crucial aspect. The most sensible approach involves dynamically adjusting sampling rates according to network traffic conditions, which is known as adaptive sampling. We propose an algorithm called Cuckoo Sampling that can operate with a fixed memory budget and perform adaptive flow-wise packet sampling. It is based on a very simple data structure and is computationally extremely lightweight. The techniques presented in this work are thoroughly evaluated through a combination of theoretical and experimental analysis.Postprint (published version

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Wireless Bandwidth Aggregation for Internet Traffic

    Get PDF
    This MQP proposes a new method for bandwidth aggregation, utilize-able by the typical home network owner. The methods explained herein aggregate a network of coordinating routers within local WiFi communication range to achieve increased bandwidth at the application layer, over the HTTP protocol. Our protocol guarantees content delivery and reliability, as well as non-repudiation measures that hold each participant, rather then the group of routers, accountable for the content they download
    • …
    corecore