4 research outputs found

    MOBEEZE. Natural Interaction Technologies, Virtual Reality and Artificial Intelligence for Gait Disorders Analysis and Rehabilitation in Patients with Parkinson's Disease

    Get PDF
    Parkinson's Disease (PD) is the most common degenerative disorder after Alzheimer's disease. Generally affecting elderly groups, it has a strong limiting effect on physical functioning and performance of roles, vitality and general perception of health. Since the disease is progressive, the patient knows he's going to get worse. The deterioration is significant not only in mobility but also in pain, social isolation, and emotional reactions. Freezing is a phenomenon associated with this disease and it is characterized by a motor disorder that leaves the patient literally stuck to the ground. Mobeeze is designed with the main objective of providing health personnel with a tool to analyse, evaluate and monitor the progress of patients’ disorders as well as the personalization and adaptation of rehabilitation sessions in patients with Parkinson's disease. Based on the characteristics measured in real time which will allow the strengthening effects of rehabilitation and help to assimilate them in the long term. The creation of Mobeeze allows the constitution of a system of analysis and evaluation of march disorders in real time, through natural interaction, virtual reality and artificial intelligence. In this project, we will analyse if these non-invasive technologies reduce the stress induced to the patient when he is feeling evaluated

    A deep learning approach for parkinson’s disease severity assessment

    Get PDF
    Purpose: Parkinson’s Disease comes on top among neurodegenerative diseases affecting 10 million worldwide. To detect Parkinson’s Disease in a prior state, gait analysis is an effective choice. However, monitoring of Parkinson’s Disease using gait analysis is time consuming and exhaustive for patients and physicians. To assess severity of symptoms, a rating scale called Unified Parkinson's Disease Rating Scale is used. It determines mild and severe cases. Today, Parkinson’s Disease severity assessment is made in gait laboratories and by manual examination. These are time consuming and it is costly for health institutions to build and maintain laboratories. By using low-cost wearables and an effective model, aforementioned problems can be solved. Methods: We provide a computerized solution for quantifiable assessment of Parkinson’s Disease symptoms severity. By using wearable sensors, our framework can predict exact symptom values to assess Parkinson’s Disease severity. We propose a deep learning approach that utilizes Ground Reaction Force sensors. From sensor signals, features are extracted and fed to a hybrid deep learning model. This model is the combination of Convolutional Neural Networks and Locally Weighted Random Forest. Results: Proposed framework achieved 0.897, 3.009, 4.556 in terms of Correlation Coefficient, Mean Absolute Error and Root Mean Square Error, respectively. Proposed framework outperformed other machine and deep learning models. We also evaluated classification performance for disease detection. We outperformed most of the previous studies, achieving 99.5% accuracy, 98.7% sensitivity and 99.1% specificity. Conclusion: This is the first study to use a deep learning regression approach to predict exact symptom value of Parkinson’s Disease patients. Results show that this approach can be effectively employed as a disease severity assessment tool using wearable sensors.publishedVersionPeer reviewe

    MOBEEZE. Natural Interaction Technologies, Virtual Reality and Artificial Intelligence for Gait Disorders Analysis and Rehabilitation in Patients with Parkinson's Disease

    No full text
    Parkinson's Disease (PD) is the most common degenerative disorder after Alzheimer's disease. Generally affecting elderly groups, it has a strong limiting effect on physical functioning and performance of roles, vitality and general perception of health. Since the disease is progressive, the patient knows he's going to get worse. The deterioration is significant not only in mobility but also in pain, social isolation, and emotional reactions. Freezing is a phenomenon associated with this disease and it is characterized by a motor disorder that leaves the patient literally stuck to the ground. Mobeeze is designed with the main objective of providing health personnel with a tool to analyse, evaluate and monitor the progress of patients’ disorders as well as the personalization and adaptation of rehabilitation sessions in patients with Parkinson's disease. Based on the characteristics measured in real time which will allow the strengthening effects of rehabilitation and help to assimilate them in the long term. The creation of Mobeeze allows the constitution of a system of analysis and evaluation of march disorders in real time, through natural interaction, virtual reality and artificial intelligence. In this project, we will analyse if these non-invasive technologies reduce the stress induced to the patient when he is feeling evaluate
    corecore