81 research outputs found

    ZF DFE transceiver design for MIMO relay systems with direct source-destination link

    Get PDF
    In this paper we consider a non-linear transceiver design for non-regenerative multiple-input multiple-output (MIMO) relay networks where a direct link exists between the source and destination. Our system utilises linear processors at the source and relay as well as a zero-forcing (ZF) decision feedback equaliser (DFE) at the receiver. Under the assumption that full channel state information (CSI) is available the precoding and equaliser matrices are designed to minimise the arithmetic mean square error (MSE) whilst meeting transmit power constraints at the source and destination. The source, relay, and destination processors are provided in closed form solution. In the absence of the direct link our design particularises to a previous ZF DFE solution and as such can be viewed as a generalisation of an existing work. We demonstrate the effectiveness of the proposed solution through simulation and show that it outperforms existing techniques in terms of bit error ratio (BER)

    Transceiver design for non-regenerative MIMO relay systems with decision feedback detection

    Get PDF
    In this paper we consider the design of zero forcing (ZF) and minimum mean square error (MMSE) transceivers for non-regenerative multiple input multiple output (MIMO) relay networks. Our designs utilise linear processors at each stage of the network along with a decision feedback detection device at the receiver. Under the assumption of full channel state information (CSI) across the entire link the processors are jointly optimised to minimise the system arithmetic mean square error (MSE) whilst meeting average power constraints at both the source and the relay terminals. We compare the presented methods to linear designs available in the literature and show the advantages of the proposed transceivers through simulation results

    Robust transceiver designs for MIMO relay communication systems

    Get PDF
    The thesis investigates robust linear and non-linear transceiver design problems for wireless MIMO relay communication systems with the assumption that the partial information of the channel is available at the relay node. The joint source and relay optimization problems for MIMO relay systems are highly nonconvex, in general. We transform the problems into suitable forms which can be efficiently solved using standard convex optimization techniques. The proposed design schemes outperform the existing techniques

    Tomlinson Harashima precoding design for non-regenerative MIMO relay networks

    Get PDF
    In this paper we consider the design of minimum mean square error (MMSE) transceivers for non-regenerative multiple input multiple output (MIMO) relay systems. Our design utilises Tomlinson Harashima precoding (THP) at the source along with linear processors in each stage of the network. Assuming full channel state information (CSI) is available at each node in the network the various processors are jointly optimised to minimise the system arithmetic mean square error (MSE) whilst abiding by average power constraints at both the source and relay terminals in the network. Simulations show that the proposed schemes outperform existing methods in terms of bit error ratio (BER)

    MMSE based transceiver design for MIMO relay systems with mean and covariance feedback

    Get PDF
    In this paper, the problem of transceiver design in a non-regenerative MIMO relay system is addressed, where linear signal processing is applied at the source, relay and destination to minimize the mean-squared error (MSE) of the signal waveform estimation at the destination. In the proposed design scheme, optimal structure of the source and relay precoding matrices are obtained with the assumption that the relay knows the mean and channel covariance information (CCI) of the relay-destination link and the full channel state information (CSI) of the source relay link. Based on this assumption, an iterative joint source and relay precoder design is proposed to achieve the minimum MSE of the signal estimation at the destination. In order to reduce computational complexity of the proposed iterative design, a suboptimal relay-only precoder design is proposed. A numerical example shows that the performance of the proposed iterative joint source and relay precoder design is very close to that of the algorithm using full CSI

    Tomlinson-Harashima Precoding Based Transceiver Design for MIMO Relay Systems With Channel Covariance Information

    Get PDF
    In this paper, we investigate the performance of the Tomlinson-Harashima (TH) precoder based nonlinear transceiver design for a nonregenerative multiple-input multiple-output (MIMO) relay system assuming that the full channel state information (CSI) of the source-relay link is known, while only the channel covariance information (CCI) of the relay-destination link is available at the relay node. We first derive the structure of the optimal TH precoding matrix and the source precoding matrix that minimize the mean-squared error (MSE) of the signal waveform estimation at the destination. Then we develop an iterative algorithm to optimize the relay precoding matrix. To reduce the computational complexity of the iterative algorithm, we propose a simplified precoding matrices design scheme. Numerical results show that the proposed precoding matrices design schemes have a better bit-error-rate performance than existing algorithms

    Channel Covariance Information Based Transceiver Design for AF MIMO Relay Systems with Direct Link

    Get PDF
    In this paper, we propose a design scheme for amplify-and-forward multiple-input multiple-output (AF MIMO) relay system with direct link to minimize the mean-squared error (MSE) of the signal estimation at the destination. In the proposed design scheme, an optimal precoding matrix is derived with the assumption that the full channel state information (CSI) of the source-relay link and partial channel state information such as channel covariance information (CCI) of the relay-destination link are available at the relay. In practical cases, if the destination is closer to the source, the source-destination link cannot be ignored. Hence, in this paper, we assume that the relay knows the partial channel state information of the source-destination link. Based on this assumption, an iterative optimal covariance algorithm is developed to achieve the minimum MSE of the signal estimation at the destination. In order to reduce computational complexity of the proposed optimal covariance algorithm, a suboptimal covariance algorithm is proposed. A numerical example shows that the developed optimal covariance algorithm outperforms the conventional CCI based MSE algorithms

    Joint Source and Relay Precoding Designs for MIMO Two-Way Relaying Based on MSE Criterion

    Full text link
    Properly designed precoders can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relay systems. In this paper, we investigate joint source and relay precoding design based on the mean-square-error (MSE) criterion in MIMO two-way relay systems, where two multi-antenna source nodes exchange information via a multi-antenna amplify-and-forward relay node. This problem is non-convex and its optimal solution remains unsolved. Aiming to find an efficient way to solve the problem, we first decouple the primal problem into three tractable sub-problems, and then propose an iterative precoding design algorithm based on alternating optimization. The solution to each sub-problem is optimal and unique, thus the convergence of the iterative algorithm is guaranteed. Secondly, we propose a structured precoding design to lower the computational complexity. The proposed precoding structure is able to parallelize the channels in the multiple access (MAC) phase and broadcast (BC) phase. It thus reduces the precoding design to a simple power allocation problem. Lastly, for the special case where only a single data stream is transmitted from each source node, we present a source-antenna-selection (SAS) based precoding design algorithm. This algorithm selects only one antenna for transmission from each source and thus requires lower signalling overhead. Comprehensive simulation is conducted to evaluate the effectiveness of all the proposed precoding designs.Comment: 32 pages, 10 figure
    corecore