54 research outputs found

    EM-Based iterative channel estimation and sequence detection for space-time coded modulation

    Get PDF
    Reliable detection of signals transmitted over a wireless communication channel requires knowledge of the channel estimate. In this work, the application of expectationmaximization (EM) algorithm to estimation of unknown channel and detection of space-time coded modulation (STCM) signals is investigated. An STCM communication system is presented which includes symbol interleaving at the transmitter and iterative EM-based soft-output decoding at the receiver. The channel and signal model are introduced with a quasi-static and time-varying Rayleigh fading channels considered to evaluate the performance of the communication system. Performance of the system employing Kalman filter with per-survivor processing to do the channel estimation and Viterbi algorithm for sequence detection is used as a reference. The first approach to apply the EM algorithm to channel estimation presents a design of an online receiver with sliding data window. Next, a block-processing EM-based iterative receiver is presented which utilizes soft values of a posteriori probabilities (APP) with maximum a posteriori probability (MAP) as the criterion of optimality in both: detection and channel estimation stages (APP-EM receiver). In addition, a symbol interleaver is introduced at the transmitter which has a great desirable impact on system performance. First, it eliminates error propagation between the detection and channel estimation stages in the receiver EM loop. Second, the interleaver increases the diversity advantage to combat deep fades of a fast fading channel. In the first basic version of the APP-EM iterative receiver, it is assumed that noise variance at the receiver input is known. Then a modified version of the receiver is presented where such assumption is not made. In addition to sequence detection and channel estimation, the EM iteration loop includes the estimation of unknown additive white Gaussian noise variance. Finally, different properties of the APP-EM iterative receiver are investigated including the effects of training sequence length on system performance, interleaver and channel correlation length effects and the performance of the system at different Rayleigh channel fading rates

    A combined channel-modified adaptive array MMSE canceller and viterbi equalizer

    Get PDF
    In this thesis, a very simple scheme is proposed which couples a maximum-likelihood sequence estimator (MLSE) with a X-element canceller. The method makes use of the MLSE\u27s channel estimator to modify the locally generated training sequence used to calculate the antenna array weights. This method will increase the array\u27s degree of freedom for interference cancellation by allowing the dispersive, desired signal to pass through the array undisturbed. Temporal equalization of the desired signal is then accomplished using maximum-likelihood sequence estimation. The T-spaced channel estimator coefficients and the array weights are obtained simultaneously using the minimum mean square error criteria. The result is a X-element receiver structure capable of canceling X- 1 in-band interferences without compromising temporal equalization

    On receiver design for an unknown, rapidly time-varying, Rayleigh fading channel

    Get PDF

    A Combined Equaliser and Decoder for Maximum Likelihood Decoding of Convolutional Codes in the presence of ISI. Incorporation into GSM 3GPP Standard

    Get PDF
    The dissertation describes a new approach in combining the equalising and decoding operations in wireless telecommunications, namely MS decoder. It provides performance results (SNR) and carries out simulations based on GSM 3GPP standard

    Distribution dependent adaptive learning

    Get PDF

    Adaptive equalisation for fading digital communication channels

    Get PDF
    This thesis considers the design of new adaptive equalisers for fading digital communication channels. The role of equalisation is discussed in the context of the functions of a digital radio communication system and both conventional and more recent novel equaliser designs are described. The application of recurrent neural networks to the problem of equalisation is developed from a theoretical study of a single node structure to the design of multinode structures. These neural networks are shown to cancel intersymbol interference in a manner mimicking conventional techniques and simulations demonstrate their sensitivity to symbol estimation errors. In addition the error mechanisms of conventional maximum likelihood equalisers operating on rapidly time-varying channels are investigated and highlight the problems of channel estimation using delayed and often incorrect symbol estimates. The relative sensitivity of Bayesian equalisation techniques to errors in the channel estimate is studied and demonstrates that the structure's equalisation capability is also susceptible to such errors. Applications of multiple channel estimator methods are developed, leading to reduced complexity structures which trade performance for a smaller computational load. These novel structures are shown to provide an improvement over the conventional techniques, especially for rapidly time-varying channels, by reducing the time delay in the channel estimation process. Finally, the use of confidence measures of the equaliser's symbol estimates in order to improve channel estimation is studied and isolates the critical areas in the development of the technique — the production of reliable confidence measures by the equalisers and the statistics of symbol estimation error bursts

    Exploiting Diversity in Broadband Wireless Relay Networks

    Get PDF
    Fading is one of the most fundamental impairments to wireless communications. The standard approach to combating fading is by adding redundancy - or diversity - to help increase coverage and transmission speed. Motivated by the results in multiple-input multiple-output technologies, which are usually used at base stations or access points, cooperation commutation has been proposed to improve the performance of wireless networks which consist of low-cost single antenna devices. While the majority of the research in cooperative communication focuses on flat fading for its simplicity and easy analysis, in practice the underlying channels in broadband wireless communication systems such as cellular systems (UMTS/LTE) are more likely to exhibit frequency selective fading. In this dissertation, we consider a frequency selective fading channel model and explore distributed diversity techniques in broadband wireless relay networks, with consideration to practical issues such as channel estimation and complexity-performance tradeoffs. We first study a system model with one source, one destination and multiple decode-and-forward (DF) relays which share a single channel orthogonal to the source. We derive the diversity-multiplexing tradeoff (DMT) for several relaying strategies: best relay selection, random relay selection, and the case when all decoding relays participate. The best relay selection method selects the relay in the decoding set with the largest sum-squared relay-to-destination channel coefficients. This scheme can achieve the optimal DMT of the system at the expense of higher complexity, compared to the other two relaying strategies which do not always exploit the spatial diversity offered by the relays. Different from flat fading, we find special cases when the three relaying strategies have the same DMT. We further present a transceiver design and prove it can achieve the optimal DMT asymptotically. Monte Carlo simulations are presented to corroborate the theoretical analysis. We provide a detailed performance comparison of the three relaying strategies in channels encountered in practice. The work has been extended to systems with multiple amplify-and-forward relays. We propose two relay selection schemes with maximum likelihood sequential estimator and linear zero- forcing equalization at the destination respectively and both schemes can asymptotically achieve the optimal DMT. We next extend the results in the two-hop network, as previously studied, to multi-hop networks. In particular, we consider the routing problem in clustered multi-hop DF relay networks since clustered multi-hop wireless networks have attracted significant attention for their robustness to fading, hierarchical structure, and ability to exploit the broadcast nature of the wireless channel. We propose an opportunistic routing (or relay selection) algorithm for such networks. In contrast to the majority of existing approaches to routing in clustered networks, our algorithm only requires channel state information in the final hop, which is shown to be essential for reaping the diversity offered by the channel. In addition to exploiting the available diversity, our simple cross-layer algorithm has the flexibility to satisfy an additional routing objective such as maximization of network lifetime. We demonstrate through analysis and simulation that our proposed routing algorithm attains full diversity under certain conditions on the cluster sizes, and its diversity is equal to the diversity of more complicated approaches that require full channel state information. The final part of this dissertation considers channel estimation in relay networks. Channel state information is vital for exploiting diversity in cooperative networks. The existing literature on cooperative channel estimation assumes that block lengths are long and that channel estimation takes place within a fading block. However, if the forwarding delay needs to be reduced, short block lengths are preferred, and adaptive estimation through multiple blocks is required. In particular, we consider estimating the relay-to-destination channel in DF relay systems for which the presence of forwarded information is probabilistic since it is unknown whether the relay participates in the forwarding phase. A detector is used so that the update of the least mean square channel estimate is made only when the detector decides the presence of training data. We use the generalized likelihood ratio test and focus on the detector threshold for deciding whether the training sequence is present. We also propose a heuristic objective function which leads to a proper threshold to improve the convergence speed and reduce the estimation error. Extensive numerical results show the superior performance of using this threshold as opposed to fixed thresholds
    • …
    corecore