5 research outputs found

    ModƩlisation Thermoacoustique de Bas Ordre et Simulation de la Fonction de Transfert d'une Flamme Diphasique

    Get PDF
    Les instabiliteĢs thermoacoustiques continuent dā€™eĢ‚tre un obstacle majeur dans le deĢveloppement des systeĢ€mes de combustion des turbines aĢ€ gaz. Ces instabiliteĢs sont caracteĢriseĢes par des oscillations de pression de grande amplitude dans la chambre de combustion. Elles sont indĆ©sirables car elles entraiĢ‚nent de fortes vibrations augmentant le bruit et les Ć©missions de polluants, provoquant des contraintes thermiques et meĢcaniques excessives sur les composants de la chambre de combustion, voire menacĢ§ant lā€™inteĢgriteĢ structurelle du systeĢ€me complet. La simulation aux grandes eĢchelles (LES) sā€™est aveĢreĢe eĢ‚tre un outil puissant capable de preĢdire de nombreux pheĢnomeĢ€nes de combustion instationnaire, y compris les instabiliteĢs. Cependant, les couĢ‚ts de calcul eĢleveĢs associeĢs empeĢ‚chent cette approche dā€™eĢ‚tre utiliseĢe en phase de conception pour analyser toutes les conceptions possibles et les conditions de fonctionnement auxquelles les instabiliteĢs restent extreĢ‚mement sensibles. Cā€™est pourquoi les modeĢ€les de bas ordre (LOM) sont preĢcieux et compleĢ€tent bien les LES, en particulier pendant les eĢtapes de preĢconception de la chambre de combustion. Bien que la plupart des outils LOM disponibles effectuent des simplifications physiques importantes (par exemple, lineĢarisation de lā€™acoustique, reĢponse aĢ€ la flamme), ils utilisent eĢgalement geĢneĢralement des geĢomeĢtries trop simplifieĢes. Lā€™un des principaux objectifs de ce travail est de remeĢdier aĢ€ cette dernieĢ€re limitation et dā€™ameĢliorer les techniques LOM existantes pour pouvoir geĢrer des geĢomeĢtries reĢalistes complexes. Une grande partie du travail sā€™articule autour du deĢveloppement et de la validation dā€™un nouvel outil de modeĢlisation de reĢseaux acoustiques baseĢ sur des ex- pansions modales (Galerkin Series) et des meĢthodes dā€™espace dā€™eĢtats (viz. STORM) pour preĢdire et analyser les instabiliteĢs. Dans STORM, un systeĢ€me complexe aĢ€ analyser est deĢcomposeĢ et repreĢsenteĢ comme un reĢseau dā€™eĢleĢments geĢomeĢtriques plus simples (sous-domaines), de connexion (couplage), de flamme et dā€™eĢleĢments dā€™impeĢdance. Les caracteĢristiques uniques de STORM sont la technique dā€™expansion modale sur des Frame reĢcemment introduite pour modeĢliser lā€™acoustique dans les sous-domaines du reĢseau et la meĢthodologie dite des connexions spectrales de surface qui a eĢteĢ deĢveloppeĢe reĢcemment au CERFACS. Ensemble, ils permettent des inter- connexions transparentes entre les sous-domaines avec une acoustique 1D/2D/3D et construisent des reĢseaux repreĢsentant des configurations complexes pertinentes pour lā€™industrie. Les meĢthodes dā€™approximation rationnelle sont discuteĢes pour incorporer des modeĢ€les reĢalistes dā€™interaction flamme/acoustique (cā€™est-aĢ€-dire, les fonctions de transfert de flamme (FTF) dans les reĢseaux STORM. Lā€™importance de quelques contraintes physiques, en particulier la causaliteĢ, dans les algorithmes deĢri- vant ces modeĢ€les de reĢponse de flamme dā€™ordre infeĢrieur, dans le domaine temporel, dans lā€™espace dā€™eĢtats et baseĢs sur les donneĢes aĢ€ partir de donneĢes de simulation expeĢrimentales ou dā€™ordre eĢleveĢ, est mise en eĢvidence. Un type speĢcial dā€™eĢleĢment dā€™impeĢdance de reĢseau, DECBC (Delayed Entropy Coupled Boundary Condition), est eĢgalement deĢveloppeĢ pour faciliter la preĢdiction des instabiliteĢs mixtes entropie- acoustique. Dans lā€™ensemble, STORM preĢsente un outil efficace, modulaire et flexi- ble pour preĢdire les instabiliteĢs thermoacoustiques et devrait aider aĢ€ deĢterminer les reĢgimes de stabiliteĢ et les strateĢgies de controĢ‚le passif optimales. Dans la deuxieĢ€me partie mineure de la theĢ€se, le forcĢ§age acoustique de la flamme de pulveĢrisation tourbillonnante turbulente est simuleĢ en utilisant lā€™approche Euler- Lagrange (EL) LES. Lā€™objectif eĢtait de calculer le FTF et dā€™eĢvaluer la pertinence du cadre de modeĢlisation de la combustion diphasique EL-LES existant pour un tel probleĢ€me dā€™identification de systeĢ€me. Des travaux reĢcents ont deĢmontreĢ le potentiel de EL-LES pour preĢdire avec preĢcision lā€™instabiliteĢ auto-entretenue. Cependant, les simulations forceĢes preĢsentent certaines difficulteĢs et la FTF obtenue numeĢriquement sā€™eĢcarte des valeurs de reĢfeĢrence expeĢrimentales dā€™environ 20 aĢ€ 30%. Les reĢsultats restent sensibles, en geĢneĢral, aux parameĢ€tres de modeĢlisation, si bien que dā€™autres investigations seront neĢcessaires pour ameĢliorer les modeĢ€les et la fideĢliteĢ des preĢvisions

    Unleashing the full power of LHCb to probe Stealth New Physics

    Get PDF
    We thank the participants in the \Stealth Physics at LHCb" workshop, held in Santiago de Compostela in February 2020 [333], for many fruitful discussions and for triggering many ideas that were developed here. We also thank the LHC Long-Lived Particle community, and the LPCC LHC Long-lived Particle and Dark Matter working groups for fostering and nurturing the interest in the ideas here discussed. We kindly acknowledge Vladimir Gligorov, Stephen Farry and Niels Tuning for kindly reading and providing comments to this document. This work has been supported by MINECO (Spain) through the RamĆ³n y Cajal program RYC-2016- 20073 and by XuntaGAL under the ED431F 2018/01 project. It has also received nancial support from XuntaGAL (Centro singular de investigaciĆ³n de Galicia accreditation 2019-2022), by European Union ERDF, by the \MarĆ­a de Maeztu" Units of Excellence program MDM-2016-0692 and the Spanish Research State Agency, and by the Generalitat Valenciana (Spain) through the plan GenT program (CIDEGENT/2019/068).In this paper, we describe the potential of the LHCb experiment to detect Stealth physics. This refers to dynamics beyond the Standard Model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.MINECO (Spain) through the Ram on y Cajal program RYC-2016- 20073XuntaGAL under the ED431F 2018/01 projectXuntaGAL (Centro singular de investigaci on de Galicia accreditation 2019-2022)European Union ERDFMarĆ­a de Maeztu" Units of Excellence program MDM-2016-0692Spanish Research State AgencyGeneralitat Valenciana (Spain) through the plan GenT program (CIDEGENT/2019/068

    The past : a compass for future earth

    Get PDF
    Antarctic sea ice impacts on the ocean-atmosphere heat and gas fluxes, the formation of deep and intermediate waters, the nutrient distribution and primary productivity, the so-called &#8216;biological carbon pump&#8217;, one of the most active in the global ocean. In this study, we explore the link between sea ice dynamic, biological production and nutrient cycling during the late Holocene (the last 2,000 yrs) in the AdƩlie Basin, East Antarctica, from the well-dated sediments of the Ocean Drilling Program (ODP) Site U1357. This archive, composed from ~32 meters of seasonal to annual laminated diatomaceous sequences, allows reconstructions at an unprecedented time resolution (5-10 yrs). Our study combines records of diatom census counts and diatom-specific biomarkers (a ratio (D/T) of di- and tri-unsaturated Highly Branched Isoprenoid lipids (HBI)) as indicators of sea ice and biological production changes, XRF data as markers for terrigenous inputs and bulk nitrogen isotopes (d15N) and d15N on chlorins as proxies for reconstructing nitrogen cycle. The diatom and HBI records reveal five distinct periods. From 0 to 350 yrs AD, decreasing occurrences of sea ice-related diatom species (e.g. Fragilariopsis curta + F. cylindrus) together with low D/T values and increasing open ocean diatom species (large centrics, Chaetoceros Resting Spores (CRS)) document a progressive decline of sea ice presence during the year (>9 months per year) with spring melting occurring earlier in the year and autumn sea ice formation appearing later. In contrast, between 350 and 750 yrs AD, high production of open ocean diatom species and low low D/T values and sea ice related species indicate a short duration of sea ice cover (~10 months per year) is illustrated by a pronounced increase of sea ice-associated diatom species and high D/T values. Between ~1400 and 1850 yrs AD, seasonal sea ice strongly declines (<~7 months per year) as a result of early spring melting (increasing CRS production) and late autumn waxing (high occurrences of Thalassiosira antarctica). Longer growing seasons promoted a substantial development of phytoplankton communities (especially large centric diatoms) that conducted to lower D/T values. Consistent with diatom and HBI reconstructions, XRF data show higher Fe/Al and Zr/Al ratios values during inferred warmer periods and lower ratio values during inferred cooler and icier periods, thus supporting a strong impact of the sea ice seasonal cycle on glacial runoffs. The link between sea ice conditions, biological production and nutrient cycling is still being explored and we will discuss its relationship by combining all the cited records cited above with the d15N records that we are currently generated. Based on our results, we find that sea ice dynamic and associated diatom production in the AdƩlie Basin revealed an opposite climatic trend than that identified in the Northern Hemisphere for the last 2000 years. The 'Little Ice Age' (1400-1850 yrs AD) or the 'Dark Ages' (400-750 yrs AD) corresponded to warmer climate conditions in the AdƩlie Basin, while the 'Roman Warm Period' (0-350 yrs AD) or the 'Medieval Warm Period' (900-1200 yrs AD) were associated to colder conditions. We therefore emphasize that Northern and Southern Hemisphere climate evolved in anti-phase seesaw pattern during the late Holocene
    corecore