141 research outputs found

    End-To-End Performance Analysis of Two-Hop Asynchronous Cooperative Diversity

    Get PDF
    International audienceFor mobile users without antenna arrays, transmission diversity can be achieved with cooperative space-time encoded transmissions. This paper present an end-to-end performance analysis of Two-Hop asynchronous cooperative diversity with regenerative relays over Rayleigh Block-Flat-Fading channel. We present a precoding frame-based scheme with packet-wise encoding which enables best synchronization and channel estimation. We derive the bit-error rate and the end-to-end bit-error rate expressions for binary phase-shift keying. We present the performance of the frame-error rate and the end-to-end frame-error rate. Finally, comparisons between three system configurations are presented. Numerical results show that the simulations coincide with the analytical results

    Communications over fading channels with partial channel information : performance and design criteria

    Get PDF
    The effects of system parameters upon the performance are quantified under the assumption that some statistical information of the wireless fading channels is available. These results are useful in determining the optimal design of system parameters. Suboptimal receivers are designed for systems that are constrained in terms of implementation complexity. The achievable rates are investigated for a wireless communication system when neither the transmitter nor the receiver has prior knowledge of the channel state information (CSI). Quantitative results are provided for independent and identically distributed (i.i.d.) Gaussian signals. A simple, low-duty-cycle signaling scheme is proposed to improve the information rates for low signal-to-noise ratio (SNR), and the optimal duty cycle is expressed as a function of the fading rate and SNR. It is demonstrated that the resource allocations and duty cycles developed for Gaussian signals can also be applied to systems using other signaling formats. The average SNR and outage probabilities are examined for amplify-and-forward cooperative relaying schemes in Rayleigh fading channels. Simple power allocation strategies are determined by using knowledge of the mean strengths of the channels. Suboptimal algorithms are proposed for cases that optimal receivers are difficult to implement. For systems with multiple transmit antennas, an iterative method is used to avoid the inversion of a data-dependent matrix in decision-directed channel estimation. When CSI is not available, two noncoherent detection algorithms are formulated based on the generalized likelihood ratio test (GLRT). Numerical results are presented to demonstrate the use of GLRT-based detectors in systems with cooperative diversity

    Extension and practical evaluation of the spatial modulation concept

    Get PDF
    The spatial modulation (SM) concept combines, in a novel fashion, digital modulation and multiple antenna transmission for low complexity and spectrally efficient data transmission. The idea considers the transmit antenna array as a spatial constellation diagram with the transmit antennas as the constellation points. To this extent, SM maps a sequence of bits onto a signal constellation point and onto a spatial constellation point. The information is conveyed by detecting the transmitting antenna (the spatial constellation point) in addition to the signal constellation point. In this manner, inter-channel interference is avoided entirely since transmission is restricted to a single antenna at any transmission instance. However, encoding binary information in the spatial domain means that the number of transmit antennas must be a power of two. To address this constraint, fractional bit encoded spatial modulation (FBE—SM) is proposed. FBE–SMuses the theory of modulus conversion to facilitate fractional bit rates over time. In particular, it allows each transmitter to use an arbitrary number of transmit antennas. Furthermore, the application of SM in a multi-user, interference limited scenario has never been considered. To this extent, the average bit error rate (ABER) of SM is characterised in the interference limited scenario. The ABER performance is first analysed for the interference-unaware detector. An interference-aware detector is then proposed and compared with the cost and complexity equivalent detector for a single–input multiple–output (SIMO) system. The application of SM with an interference-aware detector results in coding gains for the system. Another area of interest involves using SM for relaying systems. The aptitude of SM to replace or supplement traditional relaying networks is analysed and its performance is compared with present solutions. The application of SM to a fixed relaying system, termed dual-hop spatial modulation (Dh-SM), is shown to have an advantage in terms of the source to destination ABER when compared to the classical decode and forward (DF) relaying scheme. In addition, the application of SM to a relaying system employing distributed relaying nodes is considered and its performance relative to Dh-SM is presented. While significant theoretical work has been done in analysing the performance of SM, the implementation of SM in a practical system has never been shown. In this thesis, the performance evaluation of SM in a practical testbed scenario is presented for the first time. To this extent, the empirical results validate the theoretical work presented in the literature
    • …
    corecore