819 research outputs found

    ML typing, explicit polymorphism and qualified types

    Full text link

    The C++0x "Concepts" Effort

    Full text link
    C++0x is the working title for the revision of the ISO standard of the C++ programming language that was originally planned for release in 2009 but that was delayed to 2011. The largest language extension in C++0x was "concepts", that is, a collection of features for constraining template parameters. In September of 2008, the C++ standards committee voted the concepts extension into C++0x, but then in July of 2009, the committee voted the concepts extension back out of C++0x. This article is my account of the technical challenges and debates within the "concepts" effort in the years 2003 to 2009. To provide some background, the article also describes the design space for constrained parametric polymorphism, or what is colloquially know as constrained generics. While this article is meant to be generally accessible, the writing is aimed toward readers with background in functional programming and programming language theory. This article grew out of a lecture at the Spring School on Generic and Indexed Programming at the University of Oxford, March 2010

    A theory of qualified types

    Get PDF
    AbstractThis paper describes a general theory of overloading based on a system of qualified types. The central idea is the use of predicates in the type of a term, restricting the scope of universal quantification. A corresponding semantic notion of evidence is introduced and provides a uniform framework for implementing applications of this system, including Haskell style type classes, extensible records and subtyping.Working with qualified types in a simple, implicitly typed, functional language, we extend the Damas-Milner approach to type inference. As a result, we show that the set of all possible typings for a given term can be characterized by a principal type scheme, calculated by a type inference algorithm

    Koka: Programming with Row Polymorphic Effect Types

    Full text link
    We propose a programming model where effects are treated in a disciplined way, and where the potential side-effects of a function are apparent in its type signature. The type and effect of expressions can also be inferred automatically, and we describe a polymorphic type inference system based on Hindley-Milner style inference. A novel feature is that we support polymorphic effects through row-polymorphism using duplicate labels. Moreover, we show that our effects are not just syntactic labels but have a deep semantic connection to the program. For example, if an expression can be typed without an exn effect, then it will never throw an unhandled exception. Similar to Haskell's `runST` we show how we can safely encapsulate stateful operations. Through the state effect, we can also safely combine state with let-polymorphism without needing either imperative type variables or a syntactic value restriction. Finally, our system is implemented fully in a new language called Koka and has been used successfully on various small to medium-sized sample programs ranging from a Markdown processor to a tier-splitted chat application. You can try out Koka live at www.rise4fun.com/koka/tutorial.Comment: In Proceedings MSFP 2014, arXiv:1406.153

    Qualifying System F-sub

    Full text link
    Type qualifiers offer a lightweight mechanism for enriching existing type systems to enforce additional, desirable, program invariants. They do so by offering a restricted but effective form of subtyping. While the theory of type qualifiers is well understood and present in many programming languages today, polymorphism over type qualifiers is an area that is less examined. We explore how such a polymorphic system could arise by constructing a calculus System F<:Q which combines the higher-rank bounded polymorphism of System F<: with the theory of type qualifiers. We explore how the ideas used to construct System F<:Q can be reused in situations where type qualifiers naturally arise -- in reference immutability, function colouring, and capture checking. Finally, we re-examine other qualifier systems in the literature in light of the observations presented while developing System F<:Q.Comment: 24 page

    Constraint-based type inference for FreezeML

    Get PDF

    Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms

    Full text link
    We introduce Meta-F*, a tactics and metaprogramming framework for the F* program verifier. The main novelty of Meta-F* is allowing the use of tactics and metaprogramming to discharge assertions not solvable by SMT, or to just simplify them into well-behaved SMT fragments. Plus, Meta-F* can be used to generate verified code automatically. Meta-F* is implemented as an F* effect, which, given the powerful effect system of F*, heavily increases code reuse and even enables the lightweight verification of metaprograms. Metaprograms can be either interpreted, or compiled to efficient native code that can be dynamically loaded into the F* type-checker and can interoperate with interpreted code. Evaluation on realistic case studies shows that Meta-F* provides substantial gains in proof development, efficiency, and robustness.Comment: Full version of ESOP'19 pape

    Generic Programming with Extensible Data Types; Or, Making Ad Hoc Extensible Data Types Less Ad Hoc

    Full text link
    We present a novel approach to generic programming over extensible data types. Row types capture the structure of records and variants, and can be used to express record and variant subtyping, record extension, and modular composition of case branches. We extend row typing to capture generic programming over rows themselves, capturing patterns including lifting operations to records and variations from their component types, and the duality between cases blocks over variants and records of labeled functions, without placing specific requirements on the fields or constructors present in the records and variants. We formalize our approach in System R{\omega}, an extension of F{\omega} with row types, and give a denotational semantics for (stratified) R{\omega} in Agda.Comment: To appear at: International Conference on Functional Programming 2023 Corrected citations from previous versio

    Partial type constructors: Or, making ad hoc datatypes less ad hoc

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Functional programming languages assume that type constructors are total. Yet functional programmers know better: counterexamples range from container types that make limiting assumptions about their contents (e.g., requiring computable equality or ordering functions) to type families with defining equations only over certain choices of arguments. We present a language design and formal theory of partial type constructors, capturing the domains of type constructors using qualified types. Our design is both simple and expressive: we support partial datatypes as first-class citizens (including as instances of parametric abstractions, such as the Haskell Functor and Monad classes), and show a simple type elaboration algorithm that avoids placing undue annotation burden on programmers. We show that our type system rejects ill-defined types and can be compiled to a semantic model based on System F. Finally, we have conducted an experimental analysis of a body of Haskell code, using a proof-of-concept implementation of our system; while there are cases where our system requires additional annotations, these cases are rarely encountered in practical Haskell code
    • …
    corecore