21,973 research outputs found

    ML Estimation of DNA Initial Copy Number in Polymerase Chain Reaction (PCR) Processes

    Get PDF
    Estimation of DNA copy number in a given biological sample is an extremely important problem in genomics. This problem is especially challenging when the number of the DNA strands is minuscule, which is often the case in applications such as pathogen and genetic mutation detection. A recently developed technique, real-time polymerase chain reaction (PCR), amplifies the number of initial target molecules by replicating them through a series of thermal cycles. Ideally, the number of target molecules doubles at the end of each cycle. However, in practice, due to biochemical noise the efficiency of the PCR reaction, defined as the fraction of target molecules which are successfully copied during a cycle, is always less than 1. In this paper, we formulate the problem of joint maximum-likelihood estimation of the PCR efficiency and the initial DNA copy number. As indicated by simulation studies, the performance of the proposed estimator is superior with respect to competing statistical approaches. Moreover, we compute the Cramer-Rao lower bound on the mean-square estimation error

    Simulation of between repeat variability in real time PCR reactions

    Get PDF
    While many decisions rely on real time quantitative PCR (qPCR) analysis few attempts have hitherto been made to quantify bounds of precision accounting for the various sources of variation involved in the measurement process. Besides influences of more obvious factors such as camera noise and pipetting variation, changing efficiencies within and between reactions affect PCR results to a degree which is not fully recognized. Here, we develop a statistical framework that models measurement error and other sources of variation as they contribute to fluorescence observations during the amplification process and to derived parameter estimates. Evaluation of reproducibility is then based on simulations capable of generating realistic variation patterns. To this end, we start from a relatively simple statistical model for the evolution of efficiency in a single PCR reaction and introduce additional error components, one at a time, to arrive at stochastic data generation capable of simulating the variation patterns witnessed in repeated reactions (technical repeats). Most of the variation in C-q values was adequately captured by the statistical model in terms of foreseen components. To recreate the dispersion of the repeats' plateau levels while keeping the other aspects of the PCR curves within realistic bounds, additional sources of reagent consumption (side reactions) enter into the model. Once an adequate data generating model is available, simulations can serve to evaluate various aspects of PCR under the assumptions of the model and beyond

    Limits of Performance of Quantitative Polymerase Chain Reaction Systems

    Get PDF
    Estimation of the DNA copy number in a given biological sample is an important problem in genomics. Quantitative polymerase chain reaction (qPCR) systems detect the target DNA molecules by amplifying their number through a series of thermal cycles and measuring the amount of created amplicons in each cycle. Ideally, the number of target molecules doubles at the end of each cycle. However, in practice, due to biochemical noise the efficiency of the qPCR reaction—defined as the fraction of the target molecules which are successfully copied during a cycle—is always less than 1. In this paper, we formulate the problem of the joint maximum-likelihood estimation of the qPCR efficiency and the initial DNA copy number. Then, we analytically determine the limits of performance of qPCR by deriving the Cramer–Rao lower bound on the mean-square estimation error. As indicated by simulation studies, the performance of the proposed estimator is superior compared to competing statistical approaches. The proposed approach is validated using experimental data

    A synthetic biology standard for Chinese Hamster Ovary cell genome monitoring and contaminant detection by polymerase chain reaction.

    Get PDF
    BACKGROUND: Chinese Hamster Ovary (CHO) cells are the current industry standard for production of therapeutic monoclonal antibodies at commercial scales. Production optimisation in CHO cells hinges on analytical technologies such as the use of the polymerase chain reaction (PCR) to quantify genetic factors within the CHO genome and to detect the presence of contaminant organisms. PCR-based assays, whilst sensitive and accurate, are limited by (i) requiring lengthy sample preparation and (ii) a lack of standardisation. RESULTS: In this study we directly assess for the first time the effect of CHO cellular material on quantitative PCR (qPCR) and end-point PCR (e-pPCR) when used to measure and detect copies of a CHO genomic locus and a mycoplasma sequence. We also perform the first head-to-head comparison of the performance of a conventional qPCR method to that of the novel linear regression of efficiency (LRE) method when used to perform absolute qPCR on CHO-derived material. LRE qPCR features the putatively universal 'CAL1' standard. CONCLUSIONS: We find that sample preparation is required for accurate quantitation of a genomic target locus, but mycoplasma DNA sequences can be detected in the presence of high concentrations of CHO cellular material. The LRE qPCR method matches performance of a conventional qPCR approach and as such we invite the synthetic biology community to adopt CAL1 as a synthetic biology calibration standard for qPCR

    A new approach to understanding T cell development: the isolation and characterization of immature CD4-, CD8-, CD3- T cell cDNAs by subtraction cloning

    Get PDF
    During T cell development in the mammalian thymus, immature T cells are observed that lack the cell surface markers CD4, CD8, and CD3. A subtracted cDNA library was constructed to isolate cDNAs that are specific for these immature T cells. Tissue-specific expression of 97 individual cDNAs were examined using different cell types by Northern blot analysis, and six cDNAs were analyzed by reverse transcriptase (RT) polymerase chain reaction (PCR) detection of RNA. Approximately 50% of the clones could not be detected on Northern blots, and 40% of the clones were expressed by at least one other cell-type including monocytes, mature T cells, and B cells. Eight cDNA clones appear to be specific for the CD4-, CD8-, CD3- T cell line, used to construct the library, as determined by Northern blot analysis. In addition, 330 cDNA clones were subjected to partial automated DNA sequence determination. Database searches, with both nucleotide and protein translations, revealed cDNAs that exhibit interesting similarities to human cell-cycle gene 1, platelet-derived growth factor receptor, c-fms oncogene (CSF-1) receptor, and members of the immunoglobulin gene superfamily. This approach of employing subtraction coupled with large scale partial cDNA sequence determination can be useful to identify genes that may be involved in early T cell growth, cellular recognition or differentiation

    Adaptive laboratory evolution of a genome-reduced Escherichia coli.

    Get PDF
    Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology

    Study of in vitro transcriptional binding effects and noise using constitutive promoters combined with UP element sequences in Escherichia coli

    Get PDF
    Background UP elements (upstream element) are DNA sequences upstream of a promoter that interact with the α-subunit of RNA polymerase (RNAP) and can affect transcription by altering the binding RNAP to DNA. However, details of UP element and binding affinity effects on transcriptional strength are unclear. Results Here, we investigated the effects of UP element sequences on gene transcription, binding affinity, and gene expression noise. Addition of UP elements resulted in increased gene expression (maximum 95.7-fold increase) and reduced gene expression noise (8.51-fold reduction). Half UP element sequences at the proximal subsite has little effect on transcriptional strength despite increasing binding affinity by 2.28-fold. In vitro binding assays were used to determine dissociation constants (Kd) and in the in vitro system, the full range of gene expression occurs in a small range of dissociation constants (25 nM \u3c Kd \u3c 45 nM) indicating that transcriptional strength is highly sensitive to small changes in binding affinity. Conclusions These results demonstrate the utility of UP elements and provide mechanistic insight into the functional relationship between binding affinity and transcription. Given the centrality of gene expression via transcription to biology, additional insight into transcriptional mechanisms can foster both fundamental and applied research. In particular, knowledge of the DNA sequence-specific effects on expression strength can aid in promoter engineering for different organisms and for metabolic engineering to balance pathway fluxes

    Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recombinant protein production in <it>Escherichia coli </it>cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. It was recognised that a method for accurate and rapid quantification of plasmid copy number is necessary for optimization and better understanding of this process. Lately, qPCR is becoming the method of choice for this purpose. In the presented work, an improved qPCR method adopted for PCN determination in various fermentation processes was developed.</p> <p>Results</p> <p>To avoid experimental errors arising from irreproducible DNA isolation, whole cells, treated by heating at 95°C for 10 minutes prior to storage at -20°C, were used as a template source. Relative quantification, taking into account different amplification efficiencies of amplicons for chromosome and plasmid, was used in the PCN calculation. The best reproducibility was achieved when the efficiency estimated for specific amplicon, obtained within one run, was averaged. It was demonstrated that the quantification range of 2 log units (100 to 10000 bacteria per well) enable quantification in each time point during fermentation. The method was applied to study PCN variation in fermentation at 25°C and the correlation between PCN and protein accumulation was established.</p> <p>Conclusion</p> <p>Using whole cells as a template source and relative quantification considering different PCR amplification efficiencies are significant improvements of the qPCR method for PCN determination. Due to the approaches used, the method is suitable for PCN determination in fermentation processes using various media and conditions.</p

    A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci

    Get PDF
    The use of expert systems to interpret short tandem repeat DNA profiles in forensic, medical and ancient DNA applications is becoming increasingly prevalent as high-throughput analytical systems generate large amounts of data that are time-consuming to process. With special reference to low copy number (LCN) applications, we use a graphical model to simulate stochastic variation associated with the entire DNA process starting with extraction of sample, followed by the processing associated with the preparation of a PCR reaction mixture and PCR itself. Each part of the process is modelled with input efficiency parameters. Then, the key output parameters that define the characteristics of a DNA profile are derived, namely heterozygote balance (Hb) and the probability of allelic drop-out p(D). The model can be used to estimate the unknown efficiency parameters, such as π(extraction). ‘What-if’ scenarios can be used to improve and optimize the entire process, e.g. by increasing the aliquot forwarded to PCR, the improvement expected to a given DNA profile can be reliably predicted. We demonstrate that Hb and drop-out are mainly a function of stochastic effect of pre-PCR molecular selection. Whole genome amplification is unlikely to give any benefit over conventional PCR for LCN
    corecore