386 research outputs found

    An integrated approach to QoS and security in future mobile networks using the Y-Comm framework

    Get PDF
    Future networks will comprise a wide variety of wireless networks. Users will expect to be always connected from anywhere and at any time as connections will be switched to available networks using vertical handover techniques. However, different networks have different Qualities-of-Service (QoS) so a QoS framework is needed to help applications and services deal with this new environment. In addition, since these networks must work together, future mobile systems will have an open, instead of the currently closed, architecture. Therefore new mechanisms will be needed to protect users, servers and network infrastructure. This means that future mobile networks will have to integrate communications, mobility, quality-of-service and security. However, in order to achieve this integration without affecting the flexibility of future networks, there is a need for novel methods that address QoS and security in a targeted manner within specific situations. Also, there is a need for a communication framework wherein these methods along with the communication and handover mechanisms could be integrated together. Therefore, this research uses the Y-Comm framework, which is a communication architecture to support vertical handover in Next Generations Networks, as an example of future communication frameworks that integrate QoS, security, communication and mobility mechanisms. Within the context of Y-Comm, research has been conducted to address QoS and security in heterogeneous networks. To preserve the flexibility of future network, the research in this thesis proposes the concept of Targeted Models to address security and QoS in specific scenarios: to address the QoS issue, a new QoS framework is introduced in this thesis, which will define targeted QoS models that will provide QoS in different situations such as connection initiation and in the case of handover. Similarly, to deal with the security side, targeted security models are proposed to address security in situations like connection initiation and handover. To define the targeted models and map them to actual network entities, research has been conducted to define a potential structure for future networks along with the main operational entities. The cooperation among these entities will define the targeted models. Furthermore, in order to specify the security protocols used by the targeted security models, an Authentication and Key Agreement framework is introduced to address security at different levels such as network and service levels. The underlying protocols of the Authentication and Key Agreement protocol are verified using Casper/FDR, which is a well-known, formal methods- based tool. The research also investigates potential methods to implement the proposed security protocols. To enable the implementation of some of the targeted security models, the research also proposes major enhancements to the current addressing, naming and location systems

    Security in Wireless Local Area Networks (WLANs)

    Get PDF
    Major research domains in the WLAN security include: access control & data frame protection, lightweight authentication and secure handoff. Access control standard like IEEE 802.11i provides flexibility in user authentication but on the other hand fell prey to Denial of Service (DoS) attacks. For Protecting the data communication between two communicating devices—three standard protocols i.e., WEP (Wired Equivalent Privacy), TKIP (Temporal Key Integrity Protocol) and AES-CCMP (Advanced Encryption Standard—Counter mode with CBC-MAC protocol) are used. Out of these, AES-CCMP protocol is secure enough and mostly used in enterprises. In WLAN environment lightweight authentication is an asset, provided it also satisfies other security properties like protecting the authentication stream or token along with securing the transmitted message. CAPWAP (Control and Provisioning of Wireless Access Points), HOKEY (Hand Over Keying) and IEEE 802.11r are major protocols for executing the secure handoff. In WLANs, handoff should not only be performed within time limits as required by the real time applications but should also be used to transfer safely the keying material for further communication. In this chapter, a comparative study of the security mechanisms under the above-mentioned research domains is provided

    Remote Control of Unmanned Aerial Vehicles Through the Internet and IEEE 802.11

    Get PDF
    This dissertation focuses on real-time control of Unmanned Aerial Vehicles (UAVs) through TCP/IP/IEEE 802.11. Using the MAVLink protocol - an open-source protocol for micro air vehicles - a solution that allows the exchange, in real-time, of control messages between a UAV and a remote Control Station was implemented. In order to allow the UAV control by a remote user, the vehicle streams a real-time video feed captured by a video-camera on board. The main challenge of this dissertation is related about the designing and implementation of a fast handover solution that allows an uninterruptible communication

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    QoS provisioning and mobility management for IP-based wireless LAN

    Get PDF
    Today two major technological forces drive the telecommunication era: the wireless cellular systems and the Internet. As these forces converge, the demand for new services, increasing bandwidth and ubiquitous connectivity continuously grows. The next-generation mobile systems will be based solely or in a large extent, on the Internet Protocol (IP). This thesis begins by addressing the problems and challenges faced in a multimedia, IP-based Wireless LAN environment. The ETSI HiperLAN/2 system has been mainly selected as the test wireless network for our theoretical and simulation experiments. Apart from the simulations, measurements have been taken from real life test scenarios, where the IEEE 802.11 system was used (UniS Test-bed). Furthermore, a brief overview of the All-IP network infrastructure is presented. An extension to the conventional wireless (cellular) architecture, which takes advantage of the IP network characteristics, is considered. Some of the trends driving the 3G and WLANs developments are explored, while the provision of quality of service on the latter for real-time and non-real-time multimedia services is investigated, simulated and evaluated. Finally, an efficient and catholic Q0S framework is proposed. At the same time, the multimedia services should be offered in a seamless and uninterrupted manner to users who access the all-IP infrastructure via a WLAN, meeting the demands of both enterprise and public environments anywhere and anytime. Thus providing support for mobile communications not only in terms of terminal mobility, as is currently the case, but also for session, service and personal mobility. Furthermore, this mobility should be available over heterogeneous networks, such as WLANs, IJMTS, as well as fixed networks. Therefore, this work investigates issues such as, multilayer and multi-protocol (SIP-Mobile IP-Cellular IP) mobility management in wireless LAN and 3G domains. Several local and global mobility protocols and architectures have been tested and evaluated and a complete mobility management framework is proposed. Moreover, integration of simple yet efficient authentication, accounting and authorisation mechanisms with the multimedia service architecture is an important issue of IP-based WLANs. Without such integration providers will not have the necessary means to control their provided services and make revenue from the users. The proposed AAA architecture should support a robust AAA infrastructure providing secure, fast and seamless access granting to multimedia services. On the other hand, a user wishing a service from the All-IP WLAN infrastructure needs to be authenticated twice, once to get access to the network and the other one should be granted for the required service. Hence, we provide insights into these issues by simulating and evaluating pre-authentication techniques and other network authentication scenarios based on the wellknown IEEE 802.lx protocol for multimedia IP-based WLANs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Estudio de la movilidad en redes de siguiente generación

    Get PDF
    El continuo avance de las redes de telecomunicaciones nos proporciona cada vez más facilidades en todos los ámbitos de nuestra vida. En este caso, nos hemos centrado en el estudio de la movilidad en Redes de Siguiente Generación. Una parte del presente proyecto se ha realizado en colaboración con Deutsche Telekom AG, durante una estancia de seis meses trabajando como colaboradora en sus laboratorios con emplazamiento en Berlín. El principal objetivo de este proyecto ha sido realizar un estudio sobre los diferentes estándares y tecnologías que facilitan la movilidad en Redes de Siguiente Generación. Por ello, en la primera parte se han estudiado los diferentes grupos de trabajo centrados en este aspecto, así como se ha recabado información sobre productos y soluciones disponibles en el mercado, para obtener una visión global de la situación actual. Como se puede comprobar más adelante, esta primera parte es la más extensa de todo el documento. Esto se debe a que es, probablemente, la parte más importante del trabajo, ya que contiene el estudio de los mecanismos que más tarde nos servirán para dar una solución teórica a los distintos escenarios que se plantean. En la segunda parte del proyecto, nos hemos centrado en desarrollar varios escenarios de interés en sistemas de Redes de Siguiente Generación y aportar, de forma posterior, posibles soluciones teóricas. Para finalizar, se han expuesto las conclusiones extraídas como resultado del trabajo y los aspectos que se podrán tratar sobre el mismo en un futuro próximo.Ingeniería de Telecomunicació

    Fast and seamless mobility management in IPV6-based next-generation wireless networks

    Get PDF
    Introduction -- Access router tunnelling protocol (ARTP) -- Proposed integrated architecture for next generation wireless networks -- Proposed seamless handoff schemes in next generation wireless networks -- Proposed fast mac layer handoff scheme for MIPV6/WLANs

    Software-defined Networking enabled Resource Management and Security Provisioning in 5G Heterogeneous Networks

    Get PDF
    Due to the explosive growth of mobile data traffic and the shortage of spectral resources, 5G networks are envisioned to have a densified heterogeneous network (HetNet) architecture, combining multiple radio access technologies (multi-RATs) into a single holistic network. The co-existing of multi-tier architectures bring new challenges, especially on resource management and security provisioning, due to the lack of common interface and consistent policy across HetNets. In this thesis, we aim to address the technical challenges of data traffic management, coordinated spectrum sharing and security provisioning in 5G HetNets through the introduction of a programmable management platform based on Software-defined networking (SDN). To address the spectrum shortage problem in cellular networks, cellular data traffic is efficiently offloaded to the Wi-Fi network, and the quality of service of user applications is guaranteed with the proposed delay tolerance based partial data offloading algorithm. A two-layered information collection is also applied to best load balancing decision-making. Numerical results show that the proposed schemes exploit an SDN controller\u27s global view of the HetNets and take optimized resource allocation decisions. To support growing vehicle-generated data traffic in 5G-vehicle ad hoc networks (VANET), SDN-enabled adaptive vehicle clustering algorithm is proposed based on the real-time road traffic condition collected from HetNet infrastructure. Traffic offloading is achieved within each cluster and dynamic beamformed transmission is also applied to improve trunk link communication quality. To further achieve a coordinated spectrum sharing across HetNets, an SDN enabled orchestrated spectrum sharing scheme that integrates participating HetNets into an amalgamated network through a common configuration interface and real-time information exchange is proposed. In order to effectively protect incumbent users, a real-time 3D interference map is developed to guide the spectrum access based on the SDN global view. MATLAB simulations confirm that average interference at incumbents is reduced as well as the average number of denied access. Moreover, to tackle the contradiction between more stringent latency requirement of 5G and the potential delay induced by frequent authentications in 5G small cells and HetNets, an SDN-enabled fast authentication scheme is proposed in this thesis to simplify authentication handover, through sharing of user-dependent secure context information (SCI) among related access points. The proposed SCI is a weighted combination of user-specific attributes, which provides unique fingerprint of the specific device without additional hardware and computation cost. Numerical results show that the proposed non-cryptographic authentication scheme achieves comparable security with traditional cryptographic algorithms, while reduces authentication complexity and latency especially when network load is high

    Delay-centric handover in SCTP

    Get PDF
    The introduction of the Stream Control Transmission Protocol (SCTP) has opened the possibility of a mobile aware transport protocol. The multihoming feature of SCTP negates the need for a solution such as Mobile IP and, as SCTP is a transport layer protocol, it adds no complexity to the network. Utilizing the handover procedure of SCTP, the large bandwidth of WLAN can be exploited whilst in the coverage of a hotspot, and still retain the 3G connection for when the user roams out of the hotspot’s range. All this functionality is provided at the transport layer and is transparent to the end user, something that is still important in non-mobile-aware legacy applications. However, there is one drawback to this scenario - the current handover scheme implemented in SCTP is failure-centric in nature. Handover is only performed in the presence of primary destination address failure. This dissertation proposes a new scheme for performing handover using SCTP. The handover scheme being proposed employs an aggressive polling of all destination addresses within an individual SCTP association in order to determine the round trip delay to each of these addresses. It then performs handover based on these measured path delays. This delay-centric approach does not incur the penalty associated with the current failover-based scheme, namely a number of timeouts before handover is performed. In some cases the proposed scheme can actually preempt the path failure, and perform handover before it occurs. The proposed scheme has been evaluated through simulation, emulation, and within the context of a wireless environment

    39P. Nature and Extent of Identity Crime through Wireless Technology Abuse and its Impact on Individual and Organisational Levels

    Get PDF
    Perpetrator(s) are stealing personal data abusing wireless networks to commit identity fraud and related crimes that is affecting us on individual, organisational and national levels. These threats affect national security also (Smith et al. 2010). There have been instances of identity and data theft crimes involving millions of debit and credit card numbers, which indicate the seriousness of this issue and reinforce the concerns of security professionals. These cases were taken from newspapers and recent research papers related to this field and analysed in this study. The objective of this research paper is to investigate the security weaknesses in the wireless protocols and examine how perpetrators are exploiting the wireless networks. The security limitations found in the commonly used types of wireless networks are also presented. The sharing of information on social networking services such as Facebook and Twitter also pose privacy and security threats. The current study presents guidelines and discusses approaches employed to safeguard and protect wireless networks in organisations. It is a study to create public awareness about the threats and related privacy issues in the use of wireless and hand held communication devices
    corecore