620 research outputs found

    An (MI)LP-based Primal Heuristic for 3-Architecture Connected Facility Location in Urban Access Network Design

    Full text link
    We investigate the 3-architecture Connected Facility Location Problem arising in the design of urban telecommunication access networks. We propose an original optimization model for the problem that includes additional variables and constraints to take into account wireless signal coverage. Since the problem can prove challenging even for modern state-of-the art optimization solvers, we propose to solve it by an original primal heuristic which combines a probabilistic fixing procedure, guided by peculiar Linear Programming relaxations, with an exact MIP heuristic, based on a very large neighborhood search. Computational experiments on a set of realistic instances show that our heuristic can find solutions associated with much lower optimality gaps than a state-of-the-art solver.Comment: This is the authors' final version of the paper published in: Squillero G., Burelli P. (eds), EvoApplications 2016: Applications of Evolutionary Computation, LNCS 9597, pp. 283-298, 2016. DOI: 10.1007/978-3-319-31204-0_19. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-31204-0_1

    Service Network Design and Management in Linear Container Shipping Applications

    Get PDF

    Liner Service Network Design

    Get PDF

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individualsā€”from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehiclesā€”routes, suppliersā€”retailers, employeesā€”departments, and productsā€”automated guided vehiclesā€”storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    An adaptive large neighborhood search heuristic for the share-a-ride problem

    Get PDF
    The Share-a-Ride Problem (SARP) aims at maximizing the profit of serving a set of passengers and parcels using a set of homogeneous vehicles. We propose an adaptive large neighborhood search (ALNS) heuristic to address the SARP. Furthermore, we study the problem of determining the time slack in a SARP schedule. Our proposed solution approach is tested on three sets of realistic instances. The performance of our heuristic is benchmarked against a mixed integer programming (MIP) solver and the Dial-a-Ride Problem (DARP) test instances. Compared to the MIP solver, our heuristic is superior in both the solution times and the quality of the obtained solutions if the CPU time is limited. We also report new best results for two out of twenty benchmark DARP instances

    SURROGATE SEARCH: A SIMULATION OPTIMIZATION METHODOLOGY FOR LARGE-SCALE SYSTEMS

    Get PDF
    For certain settings in which system performance cannot be evaluated by analytical methods, simulation models are widely utilized. This is especially for complex systems. To try to optimize these models, simulation optimization techniques have been developed. These attempt to identify the system designs and parameters that result in (near) optimal system performance. Although more realistic results can be provided by simulation, the computational time for simulator execution, and consequently, simulation optimization may be very long. Hence, the major challenge in determining improved system designs by incorporating simulation and search methodologies is to develop more efficient simulation optimization heuristics or algorithms. This dissertation develops a new approach, Surrogate Search, to determine near optimal system designs for large-scale simulation problems that contain combinatorial decision variables. First, surrogate objective functions are identified by analyzing simulation results to observe system behavior. Multiple linear regression is utilized to examine simulation results and construct surrogate objective functions. The identified surrogate objective functions, which can be quickly executed, are then utilized as simulator replacements in the search methodologies. For multiple problems containing different settings of the same simulation model, only one surrogate objective function needs to be identified. The development of surrogate objective functions benefits the optimization process by reducing the number of simulation iterations. Surrogate Search approaches are developed for two combinatorial problems, operator assignment and task sequencing, using a large-scale sortation system simulation model. The experimental results demonstrate that Surrogate Search can be applied to such large-scale simulation problems and outperform recognized simulation optimization methodology, Scatter Search (SS). This dissertation provides a systematic methodology to perform simulation optimization for complex operations research problems and contributes to the simulation optimization field

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    • ā€¦
    corecore