63 research outputs found

    Automatic recognition of military vehicles with Krawtchouk moments

    Get PDF
    The challenge of Automatic Target Recognition (ATR) of military targets within a Synthetic Aperture Radar (SAR) scene is addressed in this paper. The proposed approach exploits the discrete defined Krawtchouk moments, that are able to represent a detected extended target with few features, allowing its characterization. The proposed algorithm provides robust performance for target recognition, identification and characterization, with high reliability in presence of noise and reduced sensitivity to discretization errors. The effectiveness of the proposed approach is demonstrated using the MSTAR dataset

    Performance analysis of co-located and distributed MIMO radar for micro-doppler classification

    Get PDF
    Over the past few years, the use of Multiple Input Multiple Output (MIMO) radar has gained increased attention as a way to mitigate the degredation of micro-Doppler classification performance incurred when the aspect angle approaches 90 degrees. In this work, the efficacy of co-located MIMO radar is compared with that of distributed MIMO. The performance anaylsis is accomplished for three different classification problems: 1) discrimination of a walking group of people from a running group of people; 2) identification of individual human activities, and 3) classification of different types of walking. In the co-located configuration each radar is placed side by side so as to form a line. In the distributed configuration, the radar positions are separated to observe the subjects from different angles. Starting from the cadence velocity diagram (CVD), the Pseudo-Zernike moments based features are extracted because of their robustness with respect to unwanted scalar and angular dependencies. Two different approaches to integrate the features obtained from multi-aspect data are compared: concatenation and principal component analysis (PCA). Results show that a distributed MIMO configuration and use of PCA to fuse multiperspective features yields higher classification performance as compared to a co-located configuration or feature vector concatenation

    Advanced signal processing solutions for ATR and spectrum sharing in distributed radar systems

    Get PDF
    Previously held under moratorium from 11 September 2017 until 16 February 2022This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance.This Thesis presents advanced signal processing solutions for Automatic Target Recognition (ATR) operations and for spectrum sharing in distributed radar systems. Two Synthetic Aperture Radar (SAR) ATR algorithms are described for full- and single-polarimetric images, and tested on the GOTCHA and the MSTAR datasets. The first one exploits the Krogager polarimetric decomposition in order to enhance peculiar scattering mechanisms from manmade targets, used in combination with the pseudo-Zernike image moments. The second algorithm employs the Krawtchouk image moments, that, being discrete defined, provide better representations of targets’ details. The proposed image moments based framework can be extended to the availability of several images from multiple sensors through the implementation of a simple fusion rule. A model-based micro-Doppler algorithm is developed for the identification of helicopters. The approach relies on the proposed sparse representation of the signal scattered from the helicopter’s rotor and received by the radar. Such a sparse representation is obtained through the application of a greedy sparse recovery framework, with the goal of estimating the number, the length and the rotation speed of the blades, parameters that are peculiar for each helicopter’s model. The algorithm is extended to deal with the identification of multiple helicopters flying in formation that cannot be resolved in another domain. Moreover, a fusion rule is presented to integrate the results of the identification performed from several sensors in a distributed radar system. Tests performed both on simulated signals and on real signals acquired from a scale model of a helicopter, confirm the validity of the algorithm. Finally, a waveform design framework for joint radar-communication systems is presented. The waveform is composed by quasi-orthogonal chirp sub-carriers generated through the Fractional Fourier Transform (FrFT), with the aim of preserving the radar performance of a typical Linear Frequency Modulated (LFM) pulse while embedding data to be sent to a cooperative system. Techniques aimed at optimise the design parameters and mitigate the Inter-Carrier Interference (ICI) caused by the quasiorthogonality of the chirp sub-carriers are also described. The FrFT based waveform is extensively tested and compared with Orthogonal Frequency Division Multiplexing (OFDM) and LFM waveforms, in order to assess both its radar and communication performance

    Non-contact smart sensing of physical activities during quarantine period using SDR technology

    Get PDF
    The global pandemic of the coronavirus disease (COVID-19) is dramatically changing the lives of humans and results in limitation of activities, especially physical activities, which lead to various health issues such as cardiovascular, diabetes, and gout. Physical activities are often viewed as a double-edged sword. On the one hand, it offers enormous health benefits; on the other hand, it can cause irreparable damage to health. Falls during physical activities are a significant cause of fatal and non-fatal injuries. Therefore, continuous monitoring of physical activities is crucial during the quarantine period to detect falls. Even though wearable sensors can detect and recognize human physical activities, in a pandemic crisis, it is not a realistic approach. Smart sensing with the support of smartphones and other wireless devices in a non-contact manner is a promising solution for continuously monitoring physical activities and assisting patients suffering from serious health issues. In this research, a non-contact smart sensing through the walls (TTW) platform is developed to monitor human physical activities during the quarantine period using software-defined radio (SDR) technology. The developed platform is intelligent, flexible, portable, and has multi-functional capabilities. The received orthogonal frequency division multiplexing (OFDM) signals with fine-grained 64-subcarriers wireless channel state information (WCSI) are exploited for classifying different activities by applying machine learning algorithms. The fall activity is classified separately from standing, walking, running, and bending with an accuracy of 99.7% by using a fine tree algorithm. This preliminary smart sensing opens new research directions to detect COVID-19 symptoms and monitor non-communicable and communicable diseases

    Sonar systems for object recognition

    Get PDF
    The deep sea exploration and exploitation is one of the biggest challenges of the next century. Military, oil & gas, o shore wind farming, underwater mining, oceanography are some of the actors interested in this eld. The engineering and technical challenges to perform any tasks underwater are great but the most crucial element in any underwater systems has to be the sensors. In air numerous sensor systems have been developed: optic cameras, laser scanner or radar systems. Unfortunately electro magnetic waves propagate poorly in water, therefore acoustic sensors are a much preferred tool then optical ones. This thesis is dedicated to the study of the present and the future of acoustic sensors for detection, identi cation or survey. We will explore several sonar con gurations and designs and their corresponding models for target scattering. We will show that object echoes can contain essential information concerning its structure and/or composition

    Millimeter-wave MIMO radars for radio-frequency imaging systems:A sparse array topology approach

    Get PDF

    Image Reconstruction for Multistatic Stepped Frequency-Modulated Continuous Wave (FMCW) Ultrasound Imaging Systems With Reconfigurable Arrays

    Get PDF
    The standard architecture of a medical ultrasound transducer is a linear phased array of piezoelectric elements in a compact, hand-held form. Acoustic energy not directly reflected back towards the transducer elements during a transmit-receive cycle amounts to lost information for image reconstruction. To mitigate this loss, a large, flexible transducer array which conforms to contours of the subject's body would result in a greater effective aperture and an increase in received image data. However, in this reconfigurable array design, element distributions are irregular and an organized arrangement can no longer be assumed. Phased array architecture also has limited scalability potential for large 2D arrays. This research work investigates a multistatic, stepped-FMCW modality as an alternative to array phasing in order to accommodate the flexible and reconfigurable nature of an array. A space-time reconstruction algorithm was developed for the imaging system. We include ultrasound imaging experiments and describe a simulation method for quickly predicting imaging performance for any given target and array configuration. Lastly, we demonstrate two reconstruction techniques for improving image resolution. The first takes advantage of the statistical significance of pixel contributions prior to the final summation, and the second corrects data errors originating from the stepped-FMCW quadrature receiver

    Tri-Orthogonal Polarisation Diverse Communications

    Get PDF
    This thesis investigates improving communication link coverage through triorthogonal polarisation diversity. Tri-orthogonal polarisation diversity exploits radiated electromagnetic energy transmission and reception in three orthogonal spatial directions with an aim to provide enhanced communication link performance. Original contributions to this branch of diversity are presented in areas of both software and hardware design. First, simulations are presented highlighting the benefit of tri-orthogonal polarisation diversity at both the transmitter and receiver over a range of terrestrial channel conditions. The results are presented in an easily understandable graphical format that results from a novel model design considering all antenna orientations. Orientation robustness at the antenna is demonstrated as a consequence of a tri-orthgonal polarisation diverse approach. Second, additional research is performed in order to extend the model into the field of satellite systems. The ionosphere is required to be modelled, and this is performed according to a novel vectorised approach using realtime ionospheric data and terrestrial magnetic field appreciation. Third, ionospheric modelling is incorporated into a non-geosynchronous satellite orbit channel model that provides an insight into the benefit of applying a tri-orthogonal polarisation diverse approach uniquely at the receiver. Novelty is provided in the form of a vectorised approach to simulation covering all antenna orientations in a field-ofview as observed from a satellite transmitter. This is extended over the orbits of three distinct satellite systems. Output is provided in graphical format and conclusions are drawn form the data which suggest that a tri-orthogonal polarisation diverse approach applied at the receiver provides an increase in reception performance. Fourth, an antenna is designed, simulated, constructed and tested that provides three orthogonal polarisations in a phase-centred differentially-fed package. Novelty is provided in the design being planar in nature, with three orthogonal modes being able to be transmitted from a single slot. Results emanating from the testing procedure demonstrate the benefits of the design in terms of diversity and extension to beamforming applications. Fifth, as an extension to the antenna design, a circularly polarised feeding arrangement is used together with an omnidirectional vertically polarised mode feed in an antenna and feed combination. This provides the possibility of a direct comparison with conventional circularly polarised techniques, such as those used in both terrestrial and satellite receive antennas. Sixth, the operational bandwidth of the omnidirectional vertically polarised mode is extended by adapting the design of the cavity wall resonating slots in a substrateintegrated monopole antenna while maintaining a planar structure. The electric monopole design demonstrates an increase in operating bandwidth from 2.5% to 56%. In the thesis, a tri-orthogonal polarisation diverse approach is shown to be beneficial to signal reception over a range of channels, both in the areas of terrestrial and satellite communications. The concept is demonstrated to be feasible in a planar structure. Triorthogonal polarisation diversity is likely to play an increasing role in the future as systems look to cope with an ever increasing data flow. The demand for content on mobile devices has forced massive growth in mobile data over the past two decades. This growth has recently reached saturation point, and so new avenues for extending growth have to be considered. A search for available bandwidth has lead research to focus on the mmWave section of the electromagnetic spectrum. The advent of the next generation of wireless connectivity, dubbed fifth generation or 5G, is now upon us (Rappaport et al. 2013b). With data traffic set to multiply by up to one thousand fold by 2020 (Qualcomm Inc. Accessed: 2014b, Qualcomm Inc. Accessed: 2014a, Li et al. 2014, Chin et al. 2014), as The Internet of Things (Ashton 2009, Cisco Inc. Accessed: 2014, Gubbi et al. 2013) enters into the fray, an overhaul of wireless design is somewhat overdue. For static point-to-point, or LoS systems, challenges exist according to the channel environment and temporal changes that may occur within. For any network that has a mobile component built in, where spatial position and alignment of transmitter and receiver change over time, signal propagation is additionally influenced by link geometry. In an increasingly mobile world, this presents challenges as increased coverage, one of the main focus points of the 5G system, will require efficient use of radiated electromagnetic energy. Conventional techniques for improving data rate have typically aimed at increasing performance at the transmitter. For terrestrial networks, a transmitter is typically stationary. Performance outweighs size constraints and so power amplification and combination may be used to excite antennas that flood a network cell with a strong linearly polarised transmitted signal. For commercial providers, this has proved a very successful technique, mainly as a result of the majority of wireless subscribers living in dense urban environments. For a linearly polarised wave, operating at conventional operating frequencies around 2 GHz, and transmitted with relatively high power, the urban environment typically provides assistance for signal reception at the receiver through diversity brought about by reflection, refraction and scattering or multipath due to the presence of buildings. Small misalignments in transmit and receive antennas are mitigated as the propagating signal wavelength is large and a relatively high transmit power establishes a relatively high signal-to-noise ratio, providing useful multipath effects over the channel. At certain receive positions, channel fading may occur when superposition of received multipath components effectively cancel each other. This may be mitigated through additional transmitters that are spaced appropriately; a concept known as spatial diversity that has been cited at mmWave frequencies (Smulders 2002, Park and Pan 2012). Diversity of signal is important in that it offers a greater possibility of a signal being received due to individuality of uncorrelated channel propagation for each diverse signal component. As more content is demanded by subscribers within an ever shrinking timeframe, a higher frequency of operation is typically required for a carrier wave capable of providing this service. Add in the context of mobility, and issues quickly appear. Beneficial effects on a linearly polarised signal operating at conventional low gigahertz frequencies arising from reflection, refraction, and scattering or multipath effects, assist signal reception. Relatively long wavelengths are subjected to many scatterers, and due to the relatively high transmit power involved, scattering effects provide diversity at the receiver in the form of many smaller receivable diverse signal components. These signal components are superpositioned either constructively or destructively, after diverse individual propagation through the channel, at the receiver to provide signal reception. At mmWave frequencies, due to a shrinking wavelength, the following issues arise: • increased path loss over a defined range due to spreading loss (Pozar 2011), and increased atmospheric absorption (Liebe et al. 1989). An obvious solution is to provide more transmit power at the transmitter. At higher frequencies, miniaturisation of devices limits this possibility as heat sinking becomes problematic. Amplifier non-linearity and unwanted third order intermodulation impact on system performance (Niknejad and Hashemi 2008, Hashemi and Raman 2016) • the beneficial effect of multipath fading may not exist in a mmWave terrestrial channel (Pi and Khan 2011), as a smaller wavelength typically implies a reduced beamwidth and less scatterers available for the LoS signal to scatter into useful smaller diverse signal components. Due to a relatively low transmit power involved, any scattering of a LoS signal into smaller, weaker diverse signal components may result in no received signal. As a result, cell range is reduced and more transmitters are required to provide coverage over a network • with a shrinking wavelength, relatively lower transmit power, and increased mobility, antenna misalignment becomes problematic. A drive for radiated power efficiency is paramount in providing the next generation of wireless networks. An ability to transmit signals into and receive signals from all angles is necessary (Rappaport et al. 2013b). The terahertz range, for example, offers extremely high transfer rates, although any small misalignment greatly affects rate. The use of dielectric mirrors is required to effectively steer the transmitted signal to its destination. Mitigation of misalignment becomes important in maintaining system performance. For the next generation of mobile wireless systems to operate within the mmWave section of the electromagnetic spectrum, a solution to extend range is to increase radiated energy in a direction of propagation, through beam steering techniques. Within a mobile context, this poses challenges, not least as the link geometry is variable. For terrestrial networks, conventional transmitted waveforms are mainly vertically polarised, or circularly polarised, and as such are mainly one dimensional, or two dimensional at best, in performance. To provide the next generation of wireless networks, a third dimension needs to be considered to provide efficient use of radiated electromagnetic energy. Frequency bands of interest for 5G systems differ from country to country. According to the US Federal Communications Commission (FCC), the mmWave region that will be studied ranges from 24–80 GHz (Rappaport et al. 2013b, Rappaport Accessed: 2014, Above Ground Level Media Group Accessed: 2015). One of the aims of 5G is to improve coverage (Rappaport et al. 2013b). One method that is being considered is the joining of terrestrial and satellite services into one seamless network that may be readily accessed by the subscriber at the receiver (Evans et al. 2005, Evans et al. 2015, Federal Communications Commission Accessed: 2016). Satellite networks provide their own specific challenges, as transmit power is limited to payload specifications, and coverage typically requires a satellite that is moving relative to the Earth’s surface. Once again we find ourselves facing the same three issues that we encountered within the terrestrial context of a mmWave channel. If we are to increase link performance in a satellite channel to complement any improvement in terrestrial channels then the following points need to be considered: • propagation using higher operating frequencies typically suffers from higher path losses (Liebe et al. 1989, Pozar 2011). In some circumstances this can be mitigated by higher transmit power, but not all. A satellite payload is subject to a strict payload capacity and this restricts the size of transmit power devices and hence available transmit power that can be launched into orbit • a lack of beneficial reflectors, refractors, and scatterers is observed during channel propagation as the signal is typically LoS, narrow in beamwidth, and weak due to higher path loss and lower transmit power (Pi and Khan 2011). Multipath effects may degrade system performance as signals are weak • an evolving link geometry that affects antenna alignment. Linear and circular polarised signals are only two dimensional in nature. Three dimensions need to be considered, and beam steering of radiated power to provide the required range is a requirement (Evans et al. 2005, Hong et al. 2014b). To ensure that the next generation of mobile systems are fully mobile, while providing increased data rate, we need to consider diversity in three dimensions. Beam steering of a transmitted signal with high gain in the direction of a receiver is one viable option, and in the context of full mobility, three dimensional signal transmission and reception appears a logical step to achieving this (Hong et al. 2014a). While at a terrestrial transmitter, it is suggested that size is not a constraint, it remains so for a satellite transmitter, as it is at a mobile receiver. This rules out spatial diversity as an approach to increasing system performance. One approach of increasing diversity within a confined volume is through polarisation techniques (Vaughan 1990). In this thesis, we investigate the benefit of a subset of this approach—tri-orthogonal polarisation diversity (Andrews et al. 2001). In effect, the concept provides at least one additional degree of freedom or layer of diversity over conventional techniques such as circular polarisation. Due to orthogonality in three directions, this approach has a wide field of view, and potentially offers diversity and improved system performance through beam steering in any unit direction. Tri-orthogonal polarisation diversity may be applied either at the transmitter, at the receiver, or at both. In Chapter 1 of the thesis, both novel software and hardware aspects of the research are highlighted. Overall, the research outcomes of this thesis from both simulation and measured results suggest that the concept of tri-orthogonal polarisation diversity is: • beneficial to wireless performance over a majority of antenna orientations • plausible for implementation within typical antenna volume constraints.Thesis (Ph.D.) -- University of Adelaide, School of School of Electrical and Electronic Engineering, 201

    Polarization techniques for mitigation of low grazing angle sea clutter

    Full text link
    Maritime surveillance radars are critical in commerce, transportation, navigation, and defense. However, the sea environment is perhaps the most challenging of natural radar backdrops because maritime radars must contend with electromagnetic backscatter from the sea surface, or sea clutter. Sea clutter poses unique challenges in very low grazing angle geometries, where typical statistical assumptions regarding sea clutter backscatter do not hold. As a result, traditional constant false alarm rate (CFAR) detection schemes may yield a large number of false alarms while objects of interest may be challenging to detect. Solutions posed in the literature to date have been either computationally impractical or lacked robustness. This dissertation explores whether fully polarimetric radar offers a means of enhancing detection performance in low grazing angle sea clutter. To this end, MIT Lincoln Laboratory funded an experimental data collection using a fully polarimetric X-band radar assembled largely from commercial off-the-shelf components. The Point de Chene Dataset, collected on the Atlantic coast of Massachusetts’ Cape Ann in October 2015, comprises multiple sea states, bandwidths, and various objects of opportunity. The dataset also comprises three different polarimetric transmit schemes. In addition to discussing the radar, the dataset, and associated post-processing, this dissertation presents a derivation showing that an established multiple input, multiple output radar technique provides a novel means of simultaneous polarimetric scattering matrix measurement. A novel scheme for polarimetric radar calibration using a single active calibration target is also presented. Subsequent research leveraged this dataset to develop Polarimetric Co-location Layering (PCL), a practical algorithm for mitigation of low grazing angle sea clutter, which is the most significant contribution of this dissertation. PCL routinely achieves a significant reduction in the standard CFAR false alarm rate while maintaining detections on objects of interest. Moreover, PCL is elegant: It exploits fundamental characteristics of both sea clutter and object returns to determine which CFAR detections are due to sea clutter. We demonstrate that PCL is robust across a range of bandwidths, pulse repetition frequencies, and object types. Finally, we show that PCL integrates in parallel into the standard radar signal processing chain without incurring a computational time penalty

    Waveform design and processing techniques in OFDM radar

    Get PDF
    Includes bibliographical referencesWith the advent of powerful digital hardware, software defined radio and radar have become an active area of research and development. This in turn has given rise to many new research directions in the radar community, which were previously not comprehensible. One such direction is the recently investigated OFDM radar, which uses OFDM waveforms instead of the classic linear frequency mod- ulated waveforms. Being a wideband signal, the OFDM symbol offers spectral efficiency along with improved range resolution, two enticing characteristics for radar. Historically a communication signal, OFDM is a special form of multi- carrier modulation, where a single data stream is transmitted over a number of lower rate carriers. The information is conveyed via sets of complex phase codes modulating the phase of the carriers. At the receiver, a demodulation stage estimates the transmitted phase codes and the information in the form of binary words is finally retrieved. In radar, the primary goal is to detect the presence of targets and possibly estimate some of their features through measurable quantities, e.g. range, Doppler, etc. Yet, being a young waveform in radar, more understanding is required to turn it into a standard radar waveform. Our goal, with this thesis, is to mature our comprehension of OFDM for radar and contribute to the realm of OFDM radar. First, we develop two processing alternatives for the case of a train of wideband OFDM pulses. In this, our first so-called time domain solution consists in applying a matched filter to compress the received echoes in the fast time before applying a fast Fourier transform in the slow time to form the range Doppler image. We motivate this approach after demonstrating that short OFDM pulses are Doppler tolerant. The merit of this approach is to conserve existing radar architectures while operating OFDM waveforms. The second so-called frequency domain solution that we propose is inspired from communication engineering research since the received echoes are tumbled in the frequency domain. After several manipulations, the range Doppler image is formed. We explain how this approach allows to retrieve an estimate of the unambiguous radial velocity, and propose two methods for that. The first method requires the use of identical sequence (IS) for the phase codes and is, as such, binding, while the other method works irrespective of the phase codes. Like the previous technique, this processing solution accommodates high Doppler frequencies and the degradation in the range Doppler image is negligible provided that the spacing between consecutive subcarriers is sufficient. Unfortunately, it suffers from the issue of intersymbol interference (ISI). After observing that both solutions provide the same processing gain, we clarify the constraints that shall apply to the OFDM signals in either of these solutions. In the first solution, special care has been employed to design OFDM pulses with low peak-to-mean power ratio (PMEPR) and low sidelobe level in the autocorrelation function. In the second solution, on the other hand, only the constraint of low PMEPR applies since the sidelobes of the scatterer characteristic function in the range Doppler image are Fourier based. Then, we develop a waveform-processing concept for OFDM based stepped frequency waveforms. This approach is intended for high resolution radar with improved low probability of detection (LPD) characteristics, as we propose to employ a frequency hopping scheme from pulse to pulse other than the conventional linear one. In the same way we treated our second alternative earlier, we derive our high range resolution processing in matrix terms and assess the degradation caused by high Doppler on the range profile. We propose using a bank of range migration filters to retrieve the radial velocity of the scatterer and realise that the issue of classical ambiguity in Doppler can be alleviated provided that the relative bandwidth, i.e. the total bandwidth covered by the train of pulses divided by the carrier frequency, is chosen carefully. After discussing a deterministic artefact caused by frequency hopping and the means to reduce it at the waveform design or processing level, we discuss the benefit offered by our concept in comparison to other standard wideband methods and emphasize on its LPD characteristics at the waveform and pulse level. In our subsequent analysis, we investigate genetic algorithm (GA) based techniques to finetune OFDM pulses in terms of radar requirements viz., low PMEPR only or low PMEPR and low sidelobe level together, as evoked earlier. To motivate the use of genetic algorithms, we establish that existing techniques are not exible in terms of the OFDM structure (the assumption that all carriers are present is always made). Besides, the use of advanced objective functions suited to particular configurations (e.g. low sidelobe level in proximity of the main autocorrelation peak) as well as the combination of multiple objective functions can be done elegantly with GA based techniques. To justify that solely phase codes are used for our optimisation(s), we stress that the weights applied to the carriers composing the OFDM signal can be spared to cope with other radar related challenges and we give an example with a case of enhanced detection. Next, we develop a technique where we exploit the instantaneous wideband trans- mission to characterise the type of the canonical scatterers that compose a target. Our idea is based on the well-established results from the geometrical theory of diffraction (GTD), where the scattered energy varies with frequency. We present the problem related to ISI, stress the need to design the transmitted pulse so as to reduce this risk and suggest having prior knowledge over the scatterers relative positions. Subsequently, we develop a performance analysis to assess the behaviour of our technique in the presence of additive white Gaussian noise (AWGN). Then, we demonstrate the merit of integrating over several pulses to improve the characterisation rate of the scatterers. Because the scattering centres of a target resonate variably at different frequencies, frequency diversity is another enticing property which can be used to enhance the sensing performance. Here, we exploit this element of diversity to improve the classification function. We develop a technique where the classification takes place at the waveform design when few targets are present. In our case study, we have three simple targets. Each is composed of perfectly electrically conducting spheres for which we have exact models of the scattered field. We develop a GA based search to find optimal OFDM symbols that best discriminate one target against any other. Thereafter, the OFDM pulse used for probing the target in the scene is constructed by stacking the resulting symbols in time. After discussing the problem of finding the best frequency window to sense the target, we develop a performance analysis where our figure of merit is the overall probability of correct classification. Again, we prove the merit of integrating over several pulses to reach classification rates above 95%. In turn, this study opens onto new challenges in the realm of OFDM radar. We leave for future research the demonstration of the practical applicability of our novel concepts and mention manifold research axes, viz., a signal processing axis that would include methods to cope with inter symbol interference, range migration issues, methods to raise the ambiguity in Doppler when several echoes from distinct scatterers overlap in the case of our frequency domain processing solutions; an algorithmic axis that would concern the heuristic techniques employed in the design of our OFDM pulses. We foresee that further tuning might help speeding up our GA based algorithms and we expect that constrained multi- objective optimisation GA (MOO-GA) based techniques shall benefit the OFDM pulse design problem in radar. A system design axis that would account for the hardware components' behaviours, when possible, directly at the waveform design stage and would include implementation of the OFDM radar system
    • …
    corecore