662 research outputs found

    Capacity and Error Performance Verification of Multi-Antenna Schemes in Radio-over-Fiber Distributed Antenna System

    Get PDF
    A radio-over-fiber distributed antenna system permits larger physical separation between antennas in a wireless system’s infrastructure; this investigation verifies that improved performance – lower error rates and higher capacities – can thus be achieved. In this paper, specific single-input multiple-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) algorithms are compared in an experimental radio over fiber system, using user-defined processing functions for the signals. It is shown that significantly reduced symbol error rate (SER) and modestly increased capacity is achieved for a wireless 1x2 SIMO uplink using the maximal ratio combining (MRC) processing algorithm and 2x1 MISO downlink using the Alamouti space time block coding (STBC) scheme. Further, SER is reduced for a downlink 2x2 wireless MIMO using the zero-forcing algorithm while, most importantly, greatly increased capacity is achieved through the spatial multiplexing gain

    Investigation of Channel Adaptation and Interference for Multiantenna OFDM

    Get PDF

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Performance improvements in SNR of a Multipath channel using OFDM-MIMO

    Get PDF
    The Non Line of Sight (NLOS) broadband wireless access provided by Worldwide Interoperability for Microwave Access (WiMAX) operating in 2-11 GHz frequency is susceptible to the effects of multipath propagation, diffraction fading, vegetation attenuation, shadowing loss etc. In order to overcome these effects effective fade mitigation techniques, have to be implemented. The Orthogonal Frequency Division Multiplexing- Multiple Input Multiple Output (OFDM-MIMO) is an efficient method that helps in combatting the fading and providing higher SNR to the WiMAX system. According to the IEEE 802.16 specification, for QPSK modulation, a threshold SNR of 6 dB is required for the link to operate. In the present work the use of OFDM-MIMO achieves a SNR above this operating threshold.

    Performance of Spatial Diversity DCO-OFDM in a Weak Turbulence Underwater Visible Light Communication Channel

    Get PDF
    The performance of underwater visible light communication (UVLC) system is severely affected by absorption, scattering and turbulence. In this article, we study the performance of spectral efficient DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) in combination with the transceiver spatial diversity in turbulence channel. Based on the approximation of the weighted sum of lognormal random variables (RVs), we derived a theoretical exact bit error rate (BER) for DCO-OFDM systems with spatial diversity. The simulation results are compared with the analytical prediction, confirming the validity of the analysis. It is shown that spatial diversity can effectively reduce the turbulence-induced channel fading. The obtained results can be useful for designing, predicting, and evaluating the DCO-OFDM UVLC system in a weak oceanic turbulence condition
    • …
    corecore