84 research outputs found

    On the Benefits of Edge Caching for MIMO Interference Alignment

    Full text link
    In this contribution, we jointly investigate the benefits of caching and interference alignment (IA) in multiple-input multiple-output (MIMO) interference channel under limited backhaul capacity. In particular, total average transmission rate is derived as a function of various system parameters such as backhaul link capacity, cache size, number of active transmitter-receiver pairs as well as the quantization bits for channel state information (CSI). Given the fact that base stations are equipped both with caching and IA capabilities and have knowledge of content popularity profile, we then characterize an operational regime where the caching is beneficial. Subsequently, we find the optimal number of transmitter-receiver pairs that maximizes the total average transmission rate. When the popularity profile of requested contents falls into the operational regime, it turns out that caching substantially improves the throughput as it mitigates the backhaul usage and allows IA methods to take benefit of such limited backhaul.Comment: 20 pages, 5 figures. A shorter version is to be presented at 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC'2015), Stockholm, Swede

    Novel transmission and beamforming strategies for multiuser MIMO with various CSIT types

    Get PDF
    In multiuser multi-antenna wireless systems, the transmission and beamforming strategies that achieve the sum rate capacity depend critically on the acquisition of perfect Channel State Information at the Transmitter (CSIT). Accordingly, a high-rate low-latency feedback link between the receiver and the transmitter is required to keep the latter accurately and instantaneously informed about the CSI. In realistic wireless systems, however, only imperfect CSIT is achievable due to pilot contamination, estimation error, limited feedback and delay, etc. As an intermediate solution, this thesis investigates novel transmission strategies suitable for various imperfect CSIT scenarios and the associated beamforming techniques to optimise the rate performance. First, we consider a two-user Multiple-Input-Single-Output (MISO) Broadcast Channel (BC) under statistical and delayed CSIT. We mainly focus on linear beamforming and power allocation designs for ergodic sum rate maximisation. The proposed designs enable higher sum rate than the conventional designs. Interestingly, we propose a novel transmission framework which makes better use of statistical and delayed CSIT and smoothly bridges between statistical CSIT-based strategies and delayed CSIT-based strategies. Second, we consider a multiuser massive MIMO system under partial and statistical CSIT. In order to tackle multiuser interference incurred by partial CSIT, a Rate-Splitting (RS) transmission strategy has been proposed recently. We generalise the idea of RS into the large-scale array. By further exploiting statistical CSIT, we propose a novel framework Hierarchical-Rate-Splitting that is particularly suited to massive MIMO systems. Third, we consider a multiuser Millimetre Wave (mmWave) system with hybrid analog/digital precoding under statistical and quantised CSIT. We leverage statistical CSIT to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. For very limited feedback and/or very sparse channels, the proposed precoding scheme yields higher sum rate than the conventional precoding schemes under a fixed total feedback constraint. Moreover, a RS transmission strategy is introduced to further tackle the multiuser interference, enabling remarkable saving in feedback overhead compared with conventional transmission strategies. Finally, we investigate the downlink hybrid precoding for physical layer multicasting with a limited number of RF chains. We propose a low complexity algorithm to compute the analog precoder that achieves near-optimal max-min performance. Moreover, we derive a simple condition under which the hybrid precoding driven by a limited number of RF chains incurs no loss of optimality with respect to the fully digital precoding case.Open Acces

    Transmission coopérative dans les réseaux sans-fil avec feedback distribué

    Get PDF
    Multiple-antenna based transmitter cooperation has been established as a promising tool towards avoiding, aligning, or shaping the interference resulting from aggressive spectral reuse. Although the impact of imperfect knowledge of the channel state information (CSI) is often investigated, it is usually assumed that the channel estimates are perfectly shared between all the transmitters. This assumption is however not adapted to many practical cases of transmitter cooperation between distant transmitters. Therefore, we focus in this thesis on the network scenario where the transmitters would like to cooperate in their transmission but can only imperfectly exchange on CSI which is acquired locally. This imperfect CSI sharing step gives rise to a CSI configuration, denoted as “distributed CSI”, where each transmitter has its own imperfect estimate of the global multi-user channel based on which it determines its transmit parameters. We study first the impact of having distributed CSI over the precoder design. Specifically, we show that conventional precoding schemes are not adapted to the distributed CSI configuration and lead to poor performance. We then turn to another aspect of this CSI configuration which is to determine “Who needs to know what", when it comes to CSI at cooperating transmitters. In contrast to the resource-hungry solution consisting in providing the same CSI to all transmitters, it is shown how a non-uniform spatial allocation of the CSI to the transmitters can provide strong gains depending on the networks topology.La coopération des transmetteurs dans les système multi-antennes a été reconnue comme un outil prometteur pour éviter ou aligner les interférences résultant d’une réutilisation agressive de la bande spectrale. Il est usuellement supposé que les estimées de canal sont parfaitement partagées entre tous les transmetteurs entrant en coopération, ce qui n’est pas adapté à de nombreuses situations où des émetteurs éloignés visent à coopérer. C’est pourquoi nous étudions le cas de réseaux sans-fil où des transmetteurs émettent d’une manière coopérative bien qu’ils ne puissent échanger que d’une manière imparfaite l’information de canal obtenue localement. Ce partage imparfait de l’information de canal donne lieu à une configuration d’information de canal, dénotée comme « distribuée », où chaque transmetteur reçoit une estimée du canal multi-utilisateurs qui lui est propre, à partir de laquelle il détermine ses paramètres de transmission. Nous étudions tout d’abord les conséquences de la configuration à information de canal distribuée sur le précodage. En particulier, nous mettons en évidence l’inefficacité des méthodes conventionnelles de précodage lorsque confrontées à une configuration à information de canal distribuée. Nous étudions ensuite une autre facette de ce scenario, qui est la détermination de « qui doit savoir quoi », lorsqu’il s’agit de l’information de canal disponible aux transmetteurs engagés dans la coopération. Il est démontré comment une allocation non-uniforme de l’information de canal aux transmetteurs peut donner lieu à des gains importants, en fonction de la géométrie du réseau considéré

    A Distributed Approach to Interference Alignment in OFDM-based Two-tiered Networks

    Full text link
    In this contribution, we consider a two-tiered network and focus on the coexistence between the two tiers at physical layer. We target our efforts on a long term evolution advanced (LTE-A) orthogonal frequency division multiple access (OFDMA) macro-cell sharing the spectrum with a randomly deployed second tier of small-cells. In such networks, high levels of co-channel interference between the macro and small base stations (MBS/SBS) may largely limit the potential spectral efficiency gains provided by the frequency reuse 1. To address this issue, we propose a novel cognitive interference alignment based scheme to protect the macro-cell from the cross-tier interference, while mitigating the co-tier interference in the second tier. Remarkably, only local channel state information (CSI) and autonomous operations are required in the second tier, resulting in a completely self-organizing approach for the SBSs. The optimal precoder that maximizes the spectral efficiency of the link between each SBS and its served user equipment is found by means of a distributed one-shot strategy. Numerical findings reveal non-negligible spectral efficiency enhancements with respect to traditional time division multiple access approaches at any signal to noise (SNR) regime. Additionally, the proposed technique exhibits significant robustness to channel estimation errors, achieving remarkable results for the imperfect CSI case and yielding consistent performance enhancements to the network.Comment: 15 pages, 10 figures, accepted and to appear in IEEE Transactions on Vehicular Technology Special Section: Self-Organizing Radio Networks, 2013. Authors' final version. Copyright transferred to IEE
    • …
    corecore