6,469 research outputs found

    Model for power consumption of wireless access networks

    Get PDF
    The power consumption of wireless access networks will become an important issue in the coming years. In this study, the power consumption of base stations for mobile WiMAX (Worldwide Interoperability for Microwave Access), fixed WiMAX, UMTS (Universal Mobile Telecommunications System), HSPA (High-Speed Packet Access) and LTE (Long-Term Evolution) is modelled and related to the coverage. A new metric, the power consumption per covered area PC(area), is introduced, to compare the energy efficiency of the considered technologies for a basic reference configuration and a future extended configuration, which makes use of novel Multiple Input Multiple Output (MIMO) technology. The introduction of MIMO has a positive influence on the energy efficiency: for example, for a 4 x 4 MIMO system, PC(area) decreases with 63% for mobile WiMAX and with 50% for HSPA and LTE, compared to a Single Input Single Ouptut (SISO) system. However, a higher MIMO array size (i.e. a higher number of transmitting and receiving antennas) does not always result in a higher energy efficiency gain

    Multi-cell massive MIMO network optimization towards power consumption in suburban scenarios

    Get PDF
    In this paper, we propose a simulation-based method to design low power multi-cell multi-user massive MIMO network by optimizing the positions of the base stations. Two realistic outdoor suburban areas have been considered in Ghent, Belgium (Europe) and Kinshasa, the Democratic Republic of Congo (Africa), in which the power consumption, the energy efficiency, the network capacity and the multiplexing gain are investigated and compared with LTE networks. The results of the simulations demonstrated that massive MIMO networks provide better performance in the crowded scenario where user's mobility is relatively low. A massive MIMO BS consumes 5-8 times less power than the LTE networks, with a pilot reuse pattern of 3 that helps obtaining a good tradeoff between the higher bit rate requested and the low power requirements in cellular environment

    Reducing the power consumption in LTE-advanced wireless access networks by a capacity based deployment tool

    Get PDF
    As both the bit rate required by applications on mobile devices and the number of those mobile devices are steadily growing, wireless access networks need to be expanded. As wireless networks also consume a lot of energy, it is important to develop energy-efficient wireless access networks in the near future. In this study, a capacity-based deployment tool for the design of energy-efficient wireless access networks is proposed. Capacity-based means that the network responds to the instantaneous bit rate requirements of the users active in the selected area. To the best of our knowledge, such a deployment tool for energy-efficient wireless access networks has never been presented before. This deployment tool is applied to a realistic case in Ghent, Belgium, to investigate three main functionalities incorporated in LTE-Advanced: carrier aggregation, heterogeneous deployments, and Multiple-Input Multiple-Output (MIMO). The results show that it is recommended to introduce femtocell base stations, supporting both MIMO and carrier aggregation, into the network (heterogeneous deployment) to reduce the network's power consumption. For the selected area and the assumptions made, this results in a power consumption reduction up to 70%. Introducing femtocell base stations without MIMO and carrier aggregation can already result in a significant power consumption reduction of 38%

    Designing energy-efficient wireless access networks: LTE and LTE-advanced

    Get PDF
    As large energy consumers, base stations need energy-efficient wireless access networks. This article compares the design of Long-Term Evolution (LTE) networks to energy-efficient LTE-Advanced networks. LIE-Advanced introduces three new functionalities - carrier aggregation, heterogeneous networks, and extended multiple-input, multiple-output (MIMO) support. The authors develop a power consumption model for LIE and LIE-Advanced macrocell and femtocell base stations, along with an energy efficiency measure. They show that LIE-Advanced's carrier aggregation and MIMO improve networks' energy efficiency up to 400 and 450 percent, respectively

    Power efficient dynamic resource scheduling algorithms for LTE

    Get PDF

    Towards a deployment tool for wireless access networks with minimal power consumption

    Get PDF
    The power consumption of wireless access networks will become an important issue in the coming years. In this paper, the power consumption of base stations for mobile WiMAX, HSPA, and LTE is modelled. This power consumption is related to the coverage of the base station. The considered technologies are compared according to their energy efficiency for different bit rates at a bandwidth of 5 MHz. For this particular case and based on the assumptions of parameters of the specifications, HSPA is the least energy-efficient technology. Until a bit rate of 11 Mbps LTE is the most energy-efficient while for higher bit rates mobile WiMAX performs the best. Furthermore the influence of MIMO is investigated. A decrease of about 80% for mobile WiMAX and about 74% for HSPA and LTE for the power consumption per covered area is found for a 4*4 MIMO system compared to a SISO system. The introduction of MIMO has thus a positive influence on the energy efficiency of the considered technologies. The power consumption and coverage model for base stations is then used to develop a prediction tool for power consumption in wireless access networks

    A Survey: Massive MIMO for next Generation Cellular Wireless Technologies

    Get PDF
    The rapid development of MIMO technology in the area of wireless communications is to setting up of base stations with large number of antennas to improvements in energy and spectral efficiency. In this paper a detailed survey on massive technology, its advantages and comparison with existing method are proposed. The Long Term Evolution (LTE) has been designed to support only packet-switched services and is aimed to provide IP connectivity between UE and eNodeB. As we move forward to5G becoming more promising next generation technology with increase in capacity, reduced latencies, support of very high frequencies (mmWave) with a smaller size single antenna, smaller the aperture for receiving energy. To overcome this small aperture on receiver side at high frequency, we need to use a large number of transmission antenna. This would be the main reason to use the Massive Multiple Input Multiple Outputs (MIMO).This paper focused on the massive MIMO performance, the gain, and return losses of different antennas operating at different frequencies
    corecore