230 research outputs found

    Matrix-Monotonic Optimization for MIMO Systems

    Full text link
    For MIMO systems, due to the deployment of multiple antennas at both the transmitter and the receiver, the design variables e.g., precoders, equalizers, training sequences, etc. are usually matrices. It is well known that matrix operations are usually more complicated compared to their vector counterparts. In order to overcome the high complexity resulting from matrix variables, in this paper we investigate a class of elegant multi-objective optimization problems, namely matrix-monotonic optimization problems (MMOPs). In our work, various representative MIMO optimization problems are unified into a framework of matrix-monotonic optimization, which includes linear transceiver design, nonlinear transceiver design, training sequence design, radar waveform optimization, the corresponding robust design and so on as its special cases. Then exploiting the framework of matrix-monotonic optimization the optimal structures of the considered matrix variables can be derived first. Based on the optimal structure, the matrix-variate optimization problems can be greatly simplified into the ones with only vector variables. In particular, the dimension of the new vector variable is equal to the minimum number of columns and rows of the original matrix variable. Finally, we also extend our work to some more general cases with multiple matrix variables.Comment: 37 Pages, 5 figures, IEEE Transactions on Signal Processing, Final Versio

    MIMO Transceivers With Decision Feedback and Bit Loading: Theory and Optimization

    Get PDF
    This paper considers MIMO transceivers with linear precoders and decision feedback equalizers (DFEs), with bit allocation at the transmitter. Zero-forcing (ZF) is assumed. Considered first is the minimization of transmitted power, for a given total bit rate and a specified set of error probabilities for the symbol streams. The precoder and DFE matrices are optimized jointly with bit allocation. It is shown that the generalized triangular decomposition (GTD) introduced by Jiang, Li, and Hager offers an optimal family of solutions. The optimal linear transceiver (which has a linear equalizer rather than a DFE) with optimal bit allocation is a member of this family. This shows formally that, under optimal bit allocation, linear and DFE transceivers achieve the same minimum power. The DFE transceiver using the geometric mean decomposition (GMD) is another member of this optimal family, and is such that optimal bit allocation yields identical bits for all symbol streams—no bit allocation is necessary—when the specified error probabilities are identical for all streams. The QR-based system used in VBLAST is yet another member of the optimal family and is particularly well-suited when limited feedback is allowed from receiver to transmitter. Two other optimization problems are then considered: a) minimization of power for specified set of bit rates and error probabilities (the QoS problem), and b) maximization of bit rate for fixed set of error probabilities and power. It is shown in both cases that the GTD yields an optimal family of solutions

    MIMO Transceiver Optimization With Linear Constraints on Transmitted Signal Covariance Components

    Get PDF
    This correspondence revisits the joint transceiver optimization problem for multiple-input multiple-output (MIMO) channels. The linear transceiver as well as the transceiver with linear precoding and decision feedback equalization are considered. For both types of transceivers, in addition to the usual total power constraint, an individual power constraint on each antenna element is also imposed. A number of objective functions including the average bit error rate, are considered for both of the above systems under the generalized power constraint. It is shown that for both types of systems the optimization problem can be solved by first solving a class of MMSE problems (AM-MMSE or GM-MMSE depending on the type of transceiver), and then using majorization theory. The first step, under the generalized power constraint, can be formulated as a semidefinite program (SDP) for both types of transceivers, and can be solved efficiently by convex optimization tools. The second step is addressed by using results from majorization theory. The framework developed here is general enough to add any finite number of linear constraints to the covariance matrix of the input

    Power Allocation in Two-Hop Amplify-and-Forward MIMO Relay Systems with QoS requirements

    Full text link
    The problem of minimizing the total power consumption while satisfying different quality-of-service (QoS) requirements in a two-hop multiple-input multiple-output network with a single non-regenerative relay is considered. As shown by Y. Rong in [1], the optimal processing matrices for both linear and non-linear transceiver architectures lead to the diagonalization of the source-relay-destination channel so that the power minimization problem reduces to properly allocating the available power over the established links. Unfortunately, finding the solution of this problem is numerically difficult as it is not in a convex form. To overcome this difficulty, existing solutions rely on the computation of upper- and lower-bounds that are hard to obtain or require the relaxation of the QoS constraints. In this work, a novel approach is devised for both linear and non-linear transceiver architectures, which allows to closely approximate the solutions of the non-convex power allocation problems with those of convex ones easy to compute in closed-form by means of multi-step procedures of reduced complexity. Computer simulations are used to assess the performance of the proposed approach and to make comparisons with alternatives

    Joint optimization of transceivers with decision feedback and bit loading

    Get PDF
    The transceiver optimization problem for MIMO channels has been considered in the past with linear receivers as well as with decision feedback (DFE) receivers. Joint optimization of bit allocation, precoder, and equalizer has in the past been considered only for the linear transceiver (transceiver with linear precoder and linear equalizer). It has also been observed that the use of DFE even without bit allocation in general results in better performance that linear transceivers with bit allocation. This paper provides a general study of this for transceivers with the zero-forcing constraint. It is formally shown that when the bit allocation, precoder, and equalizer are jointly optimized, linear transceivers and transceivers with DFE have identical performance in the sense that transmitted power is identical for a given bit rate and error probability. The developments of this paper are based on the generalized triangular decomposition (GTD) recently introduced by Jiang, Li, and Hager. It will be shown that a broad class of GTD-based systems solve the optimal DFE problem with bit allocation. The special case of a linear transceiver with optimum bit allocation will emerge as one of the many solutions

    Hybrid Transceiver Optimization for Multi-Hop Communications

    Full text link
    Multi-hop communication with the aid of large-scale antenna arrays will play a vital role in future emergence communication systems. In this paper, we investigate amplify-and-forward based and multiple-input multiple-output assisted multi-hop communication, in which all nodes employ hybrid transceivers. Moreover, channel errors are taken into account in our hybrid transceiver design. Based on the matrix-monotonic optimization framework, the optimal structures of the robust hybrid transceivers are derived. By utilizing these optimal structures, the optimizations of analog transceivers and digital transceivers can be separated without loss of optimality. This fact greatly simplifies the joint optimization of analog and digital transceivers. Since the optimization of analog transceivers under unit-modulus constraints is non-convex, a projection type algorithm is proposed for analog transceiver optimization to overcome this difficulty. Based on the derived analog transceivers, the optimal digital transceivers can then be derived using matrix-monotonic optimization. Numeral results obtained demonstrate the performance advantages of the proposed hybrid transceiver designs over other existing solutions.Comment: 32 pages, 6 figures. This manuscript has been submitted to IEEE Journal on Selected Areas in Communications (special issue on Multiple Antenna Technologies for Beyond 5G

    GTD-based transceivers for decision feedback and bit loading

    Get PDF
    We consider new optimization problems for transceivers with DFE receivers and linear precoders, which also use bit loading at the transmitter. First, we consider the MIMO QoS (quality of service) problem, which is to minimize the total transmitted power when the bit rate and probability of error of each data stream are specified. The developments of this paper are based on the generalized triangular decomposition (GTD) recently introduced by Jiang, Li, and Hager. It is shown that under some multiplicative majorization conditions there exists a custom GTD-based transceiver which achieves the minimal power. The problem of maximizing the bit rate subject to the total power constraint and given error probability is also considered in this paper. It is shown that the GTD-based systems also give the optimal solutions to the bit rate maximization problem

    Generalized Triangular Decomposition in Transform Coding

    Get PDF
    A general family of optimal transform coders (TCs) is introduced here based on the generalized triangular decomposition (GTD) developed by Jiang This family includes the Karhunen-Loeve transform (KLT) and the generalized version of the prediction-based lower triangular transform (PLT) introduced by Phoong and Lin as special cases. The coding gain of the entire family, with optimal bit allocation, is equal to that of the KLT and the PLT. Even though the original PLT introduced by Phoong is not applicable for vectors that are not blocked versions of scalar wide sense stationary processes, the GTD-based family includes members that are natural extensions of the PLT, and therefore also enjoy the so-called MINLAB structure of the PLT, which has the unit noise-gain property. Other special cases of the GTD-TC are the geometric mean decomposition (GMD) and the bidiagonal decomposition (BID) transform coders. The GMD-TC in particular has the property that the optimum bit allocation is a uniform allocation; this is because all its transform domain coefficients have the same variance, implying thereby that the dynamic ranges of the coefficients to be quantized are identical
    corecore