429 research outputs found

    Performance analysis of MIMO-SESS with Alamouti scheme over Rayleigh fading channels

    Get PDF
    Las unidades fraseológicas han estado presentes en los repertorios desde los comienzos de la lexicografía. Y no solamente en los diccionarios generales, sino también en las catalogaciones especializadas, tanto de naturaleza monolingüe como bilingüe. No obstante, siempre ha existido dificultad terminológica para la categorización de los diferentes fenómenos del discurso repetido. Si bien esto no ha sido un inconveniente para que se hayan publicado numerosas compilaciones, sobre todo de refranes en un principio, ya que en la actualidad, fundamentalmente, gracias al auge de los estudios teóricos sobre fraseología, han proliferado otras obras (algunas aplicadas a la glosodidáctica, dada su importancia hoy en día) en las que se da cabida con mayor frecuencia a enunciados de valor específico y a locuciones; en unas ocasiones, ahondando en el origen que les dio entidad y, en otras, estableciendo etiquetados precisos que hasta el momento solían estar ausentes, pero con la finalidad, al fin y al cabo, de desentrañar el sentido, dada la escasa deducibilidad que presentan estas secuencias fijadas por la simple suma de sus elementos constitutivos. Un análisis de estos repertorios a través de los siglos, es, por tanto, el objetivo de este trabajo.Since the beginning of lexicography, phraseological units have been included in repertoires; not only in general dictionaries, but also in monolingual and bilingual specialized catalogues. However, there have always been terminological difficulties for classifying various phenomena of repeated speech. Although this has not been inconvenient for publishing many compilations of sayings, especially at the beginning, because nowadays they frequently include utterances with precise value and idioms, mainly due to the rise of theoretical studies on phraseology (some applied to ASL Linguistics, given its importance today). In them, sometimes, the origin of the phraseological unit is included and, in others, accurate labels that were absent before are determined in order, finally and ultimately, to unravel the meaning, given the reduced deductibility that these sequences present from the simple sum of their constituent elements. The objective of this work is, therefore, an analysis of these repertories throughout the centuries

    Performance analysis of MIMO-SESS with Alamouti scheme over Rayleigh fading channels

    Get PDF
    Self-encoded spread spectrum (SESS) is a novel modulation technique that acquires its spreading sequence from the random input data stream rather than through the use of the traditional pseudo-noise code generator. It has been incorporated with multiple-input multiple-output (MIMO) systems as a means to combat fading in wireless channels. In this paper, we present the analytical study of the bit-error rate (BER) performance of MIMO-SESS systems under Rayleigh fading. The BER expressions are derived in closed form, and the veracity of the analysis is confirmed by numerical calculations that demonstrate excellent agreement with simulation results. The performance analysis shows that the effects of fading can be effectively mitigated by taking advantage of spatial and temporal diversities. For example, a 2 × 2 MIMO-SESS system can achieve about 7 dB performance improvement at 10-4 BER over a MIMO PN-coded spread spectrum system

    BEP Performance Analysis of Multi-Node Self Encoded Spread Spectrum - Cooperative Diversity in Rayleigh Fading Channel

    Get PDF
    Self - encoded spread spectrum (SESS) is a novel modulation technique th at acquires its spreading sequence from the random input data stream rather than through the use of the traditional pseudo - noise code generator. It has been incorporated with multi node cooperative diversity systems as a means to combat fading in wireless channels. In this paper we analyze the cooperative SESS for Amplify and Forward CD links ( M SESS - AFCD) and SESS for Decode and forward CD links ( M SESS - DFCD) in Rayleigh fading channels. The BE P expressions are derived in closed form, and the veracity of the analysis is confirmed by numerical calculations that demonstrate excellent agreement with simulation results

    Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation

    Get PDF
    As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication
    corecore