70 research outputs found

    Preamble design using embedded signalling for OFDM broadcast systems based on reduced-complexity distance detection

    No full text
    The second generation digital terrestrial television broadcasting standard (DVB-T2) adopts the so-called P1 symbol as the preamble for initial synchronization. The P1 symbol also carries a number of basic transmission parameters, including the fast Fourier transform size and the single-input/single-output as well as multiple-input/single-output mode, in order to appropriately configure the receiver for carrying out the subsequent processing. In this contribution, an improved preamble design is proposed, where a pair of training sequences is inserted in the frequency domain and their distance is used for transmission parameter signalling. At the receiver, only a low-complexity correlator is required for the detection of the signalling. Both the coarse carrier frequency offset and the signalling can be simultaneously estimated by detecting the above-mentioned correlation. Compared to the standardised P1 symbol, the proposed preamble design significantly reduces the complexity of the receiver while retaining high robustness in frequency-selective fading channels. Furthermore, we demonstrate that the proposed preamble design achieves a better signalling performance than the standardised P1 symbol, despite reducing the numbers of multiplications and additions by about 40% and 20%, respectively

    Quantized Multimode Precoding in Spatially Correlated Multi-Antenna Channels

    Full text link
    Multimode precoding, where the number of independent data-streams is adapted optimally, can be used to maximize the achievable throughput in multi-antenna communication systems. Motivated by standardization efforts embraced by the industry, the focus of this work is on systematic precoder design with realistic assumptions on the spatial correlation, channel state information (CSI) at the transmitter and the receiver, and implementation complexity. For spatial correlation of the channel matrix, we assume a general channel model, based on physical principles, that has been verified by many recent measurement campaigns. We also assume a coherent receiver and knowledge of the spatial statistics at the transmitter along with the presence of an ideal, low-rate feedback link from the receiver to the transmitter. The reverse link is used for codebook-index feedback and the goal of this work is to construct precoder codebooks, adaptable in response to the statistical information, such that the achievable throughput is significantly enhanced over that of a fixed, non-adaptive, i.i.d. codebook design. We illustrate how a codebook of semiunitary precoder matrices localized around some fixed center on the Grassmann manifold can be skewed in response to the spatial correlation via low-complexity maps that can rotate and scale submanifolds on the Grassmann manifold. The skewed codebook in combination with a lowcomplexity statistical power allocation scheme is then shown to bridge the gap in performance between a perfect CSI benchmark and an i.i.d. codebook design.Comment: 30 pages, 4 figures, Preprint to be submitted to IEEE Transactions on Signal Processin
    corecore