393 research outputs found

    Pushing AI to Wireless Network Edge: An Overview on Integrated Sensing, Communication, and Computation towards 6G

    Full text link
    Pushing artificial intelligence (AI) from central cloud to network edge has reached board consensus in both industry and academia for materializing the vision of artificial intelligence of things (AIoT) in the sixth-generation (6G) era. This gives rise to an emerging research area known as edge intelligence, which concerns the distillation of human-like intelligence from the huge amount of data scattered at wireless network edge. In general, realizing edge intelligence corresponds to the process of sensing, communication, and computation, which are coupled ingredients for data generation, exchanging, and processing, respectively. However, conventional wireless networks design the sensing, communication, and computation separately in a task-agnostic manner, which encounters difficulties in accommodating the stringent demands of ultra-low latency, ultra-high reliability, and high capacity in emerging AI applications such as auto-driving. This thus prompts a new design paradigm of seamless integrated sensing, communication, and computation (ISCC) in a task-oriented manner, which comprehensively accounts for the use of the data in the downstream AI applications. In view of its growing interest, this article provides a timely overview of ISCC for edge intelligence by introducing its basic concept, design challenges, and enabling techniques, surveying the state-of-the-art development, and shedding light on the road ahead

    Over-the-Air Split Machine Learning in Wireless MIMO Networks

    Get PDF
    In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes, requiring a large amount of communication cost. As over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication, thus by substituting the wireless transmission in the traditional split ML framework with OAC, the communication load can be eased. In this paper, we propose to deploy split ML in a wireless multiple-input multiple-output (MIMO) communication network utilizing the intricate interplay between MIMO-based OAC and NN. The basic procedure of OAC split ML system is first provided, and we show that the inter-layer connection in a NN of any size can be mathematically decomposed into a set of linear precoding and combining transformations over a MIMO channel carrying out multi-stream analog communication. The precoding and combining matrices which are regarded as trainable parameters, and the MIMO channel matrix which are regarded as unknown (implicit) parameters, jointly serve as a fully connected layer of the NN. Most interestingly, the channel estimation procedure can be eliminated by exploiting the MIMO channel reciprocity of the forward and backward propagation, thus greatly saving the system costs and/or further improving its overall efficiency. The generalization of the proposed scheme to the conventional NNs is also introduced, i.e., the widely used convolutional neural networks. We demonstrate its effectiveness under both the static and quasi-static memory channel conditions with comprehensive simulations

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    • …
    corecore