89 research outputs found

    An intelligent fault diagnosis method using variable weight artificial immune recognizers (V-AIR)

    Get PDF
    The Artificial Immune Recognition System (AIRS), which has been proved to be a successful classification method in the field of Artificial Immune Systems, has been used in many classification problems and gained good classification effect. However, the network inhibition mechanisms used in these methods are based on the threshold inhibition and the cells with low affinity will be deleted directly from the network, which will misrepresent the key features of the data set for not considering the density information within the data. In this paper, we utilize the concept of data potential field and propose a new weight optimizing network inhibition algorithm called variable weight artificial immune recognizer (V-AIR) where we replace the network inhibiting mechanism based on affinity with the inhibiting mechanism based on weight optimizing. The concept of data potential field was also used to describe the data distribution around training samples and the pattern of a training data belongs to the class with the largest potential field. At last, we used this algorithm to rolling bearing analog fault diagnosis and reciprocating compressor valves fault diagnosis, which get a good classification effect

    Adapting Artificial Immune Algorithms For University Timetabling

    Get PDF
    Penjadualan kelas dan peperiksaan di universiti adalah masalah pengoptimuman berkekangan tinggi. University class and examination timetabling are highly constrained optimization problems

    An Evolutionary Algorithm to Generate Ellipsoid Detectors for Negative Selection

    Get PDF
    Negative selection is a process from the biological immune system that can be applied to two-class (self and nonself) classification problems. Negative selection uses only one class (self) for training, which results in detectors for the other class (nonself). This paradigm is especially useful for problems in which only one class is available for training, such as network intrusion detection. Previous work has investigated hyper-rectangles and hyper-spheres as geometric detectors. This work proposes ellipsoids as geometric detectors. First, the author establishes a mathematical model for ellipsoids. He develops an algorithm to generate ellipsoids by training on only one class of data. Ellipsoid mutation operators, an objective function, and a convergence technique are described for the evolutionary algorithm that generates ellipsoid detectors. Testing on several data sets validates this approach by showing that the algorithm generates good ellipsoid detectors. Against artificial data sets, the detectors generated by the algorithm match more than 90% of nonself data with no false alarms. Against a subset of data from the 1999 DARPA MIT intrusion detection data, the ellipsoids generated by the algorithm detected approximately 98% of nonself (intrusions) with an approximate 0% false alarm rate

    Autonomous Robotic Model Based on Human Endocrine System

    Get PDF
    Robots are being used in industry for quite some time and have evolved into much sophisticated autonomous agents. Now, with the advancement in technology, robots are fast entering daily life. This highlights some important aspects of their use; that is collaboration among robots and human-robot interaction. This thesis concentrates on robotic collaboration and presents a model that is based on human endocrine system. In another area of research, namely Computer Immune System, researchers have used human immune system as the basis for their research model. This led us to look for answer to our problem inside human physiological systems. We chose Blood Glucose Control Mechanism as our source from among other systems because it is simpler and has the characteristics that our robotic collaboration model can be based on. We implemented the model in a hypothetical field of underground mines where two types of robots were used for mine detection and removal. A visual simulation was also developed. The data was then analyzed in terms of average time required to detect and to remove a single mine. We repeated the experiments 5 times, with number of mines varying from 1 through 15, and then calculated the average time. The results show that, as the number of mines increases, the average detection and removal time decreases. The implementation of this model showed that this model may be implemented with real robots. The model is scalable, robust and has no single point of failure. Robots can be added and / or removed while in operation without affecting overall system. This may provide the basis for future work where this model may be implemented with real robots.Computer Science Departmen

    Development and evaluation of a fault detection and identification scheme for the WVU YF-22 UAV using the artificial immune system approach

    Get PDF
    A failure detection and identification (FDI) scheme is developed for a small remotely controlled jet aircraft based on the Artificial Immune System (AIS) paradigm. Pilot-in-the-loop flight data are used to develop and test a scheme capable of identifying known and unknown aircraft actuator and sensor failures. Negative selection is used as the main mechanism for self/non-self definition; however, an alternative approach using positive selection to enhance performance is also presented. Tested failures include aileron and stabilator locked at trim and angular rate sensor bias. Hyper-spheres are chosen to represent detectors. Different definitions of distance for the matching rules are applied and their effect on the behavior of hyper-bodies is discussed. All the steps involved in the creation of the scheme are presented including design selections embedded in the different algorithms applied to generate the detectors set. The evaluation of the scheme is performed in terms of detection rate, false alarms, and detection time for normal conditions and upset conditions. The proposed detection scheme achieves good detection performance for all flight conditions considered. This approach proves promising potential to cope with the multidimensional characteristics of integrated/comprehensive detection for aircraft sub-system failures.;A preliminary performance comparison between an AIS based FDI scheme and a Neural Network and Floating Threshold based one is presented including groundwork on assessing possible improvements on pilot situational awareness aided by FDI schemes. Initial results favor the AIS approach to FDI due to its rather undemanding adaptation capabilities to new environments. The presence of the FDI scheme suggests benefits for the interaction between the pilot and the upset conditions by improving the accuracy of the identification of each particular failure and decreasing the detection delays

    Artificial Immune System for Unmanned Aerial Vehicle Abnormal Condition Detection and Identification

    Get PDF
    A detection and identification scheme for abnormal conditions was developed for an unmanned aerial vehicle (UAV) based on the artificial immune system (AIS) paradigm. This technique involves establishing a body of data to represent normal conditions referred to as “self” and differentiating these conditions from abnormal conditions, referred to as “non-self”. Data collected from simulation of the UAV attempting to autonomously fly a pre-decided trajectory were used to develop and test a scheme that was able to detect and identify aircraft sensor and actuator faults. These faults included aerodynamic control surface locks and damages and angular rate sensor biases. The method used to create the AIS is known as the partition of the universe approach. This approach differs from standard clustering approaches because the universe is divided into uniform partition clusters rather than clustering data using some clustering algorithm. It is simpler and requires less computational resources. This will be the first time that this approach has been applied for use in aerospace engineering. Data collected from nominal flights were used to define self partitions, and the non-self partitions were defined implicitly. The creation scheme is also discussed, involving all software used for simulation, as well as the process of creating the self and the logic behind the detection and identification schemes. The detection scheme was evaluated based on detection rate, detection time, and false alarms for flights under both normal and abnormal conditions. The failure identification scheme was assessed in terms of identification rate and time. Investigation of the proposed technique showed promising results for the cases explored with comparable performance with respect to clustering-based approaches and motivates further research and extension of the proposed methodology toward a more complete health management system

    The feature detection rule and its application within the negative selection algorithm

    Get PDF
    The negative selection algorithm developed by Forrest et al. was inspired by the manner in which T-cell lymphocytes mature within the thymus before being released into the blood system. The resultant T-cell lymphocytes, which are then released into the blood, exhibit an interesting characteristic: they are only activated by non-self cells that invade the human body. The work presented in this thesis examines the current body of research on the negative selection theory and introduces a new affinity threshold function, called the feature-detection rule. The feature-detection rule utilises the inter-relationship between both adjacent and non-adjacent features within a particular problem domain to determine if an artificial lymphocyte is activated by a particular antigen. The performance of the feature-detection rule is contrasted with traditional affinity-matching functions currently employed within negative selection theory, most notably the r-chunks rule (which subsumes the r-contiguous bits rule) and the hamming-distance rule. The performance will be characterised by considering the detection rate, false-alarm rate, degree of generalisation and degree of overfitting. The thesis will show that the feature-detection rule is superior to the r-chunks rule and the hamming-distance rule, in that the feature-detection rule requires a much smaller number of detectors to achieve greater detection rates and less false-alarm rates. The thesis additionally refutes that the way in which permutation masks are currently applied within negative selection theory is incorrect and counterproductive, while placing the feature-detection rule within the spectrum of affinity-matching functions currently employed by artificial immune-system (AIS) researchers.Dissertation (MSc)--University of Pretoria, 2009.Computer ScienceUnrestricte

    Integrated Immunity-based Methodology for UAV Monitoring and Control

    Get PDF
    A general integrated and comprehensive health management framework based on the artificial immune system (AIS) paradigm is formulated and an automated system is developed and tested through simulation for the detection, identification, evaluation, and accommodation (DIEA) of abnormal conditions (ACs) on an unmanned aerial vehicle (UAV). The proposed methodology involves the establishment of a body of data to represent the function of the vehicle under nominal conditions, called the self, and differentiating this operation from that of the vehicle under an abnormal condition, referred to as the non-self. Data collected from simulations of the selected UAV autonomously flying a set of prescribed trajectories were used to develop and test novel schemes that are capable of addressing the AC-DIEA of sensor and actuator faults on a UAV. While the specific dynamic system used here is a UAV, the proposed framework and methodology is general enough to be adapted and applied to any complex dynamic system. The ACs considered within this effort included aerodynamic control surface locks and damage and angular rate sensor biases. The general framework for the comprehensive health management system comprises a novel complete integration of the AC-DIEA process with focus on the transition between the four different phases. The hierarchical multiself (HMS) strategy is used in conjunction with several biomimetic mechanisms to address the various steps in each phase. The partition of the universe approach is used as the basis of the AIS generation and the binary detection phase. The HMS approach is augmented by a mechanism inspired by the antigen presenting cells of the adaptive immune system for performing AC identification. The evaluation and accommodation phases are the most challenging phases of the AC-DIEA process due to the complexity and diversity of the ACs and the multidimensionality of the AIS. Therefore, the evaluation phase is divided into three separate steps: the qualitative evaluation, direct quantitative evaluation, and the indirect quantitative evaluation, where the type, severity, and effects of the AC are determined, respectively. The integration of the accommodation phase is based on a modular process, namely the strategic decision making, tactical decision marking, and execution modules. These modules are designed by the testing of several approaches for integrating the accommodation phase, which are specialized based on the type of AC being addressed. These approaches include redefining of the mission, adjustment or shifting of the control laws, or adjusting the sensor outputs. Adjustments of the mission include redefining of the trajectory to remove maneuvers which are no longer possible, while adjusting of the control laws includes modifying gains involved in determination of commanded control surface deflections. Analysis of the transition between phases includes a discussion of results for integrated example cases where the proposed AC-DIEA process is applied. The cases considered show the validity of the integrated AC-DIEA system and specific accommodation approaches by an improvement in flight performance through metrics that capture trajectory tracking errors and control activity differences between nominal, abnormal, and accommodated cases

    Анализ биоинспирированных подходов для защиты компьютерных систем и сетей

    Get PDF
    Nowadays more and more different bio-inspired approaches (based on a biological metaphor) for the computer and networks security systems are mentioned and advertised. Traditional computer-based systems and their functionality are often limited by different conditions. Due to frequent minor errors, these systems are subject of failure. They lack scalability, have low adaptation ability to changeable conditions of functioning and its goals. As opposed to traditional computer-based systems, biological systems are often quite reliable. They have great self-protection mechanisms, highly scalable, adaptable and able to self regeneration. These properties of biological systems can be used to construct technical systems (including information security systems). The paper considers different approaches to the protection of computer systems and networks, which are based on a biological metaphor.В настоящее время в области безопасности компьютерных систем и сетей все чаще упоминаются и рекламируются различные биоинспирированные подходы, то есть подходы, основанные на биологической метафоре. Действительно, традиционные компьютерные методы и системы, как правило, ограничены по своим функциональным возможностям, подвержены частому выходу из строя из-за незначительных ошибок, имеют недостаточную масштабируемость, не обладают способностью к адаптации к условиям функционирования и изменению целей. В противоположность этому, биологические системы, как правило, реализуют развитые механизмы самозащиты, достаточно надежны, обладают высокой масштабируемостью, адаптивны и способны к саморегенерации. Указанные свойства биологических систем стимулируют использование принципов их построения и механизмов их функционирования в технических системах, включая системы защиты информации. В данной статье рассматриваются различные подходы к защите компьютерных систем и сетей, в основе которых лежит биологическая метафора

    Exploiting immunological metaphors in the development of serial, parallel and distributed learning algorithms

    Get PDF
    This thesis examines the use of immunological metaphors in building serial, parallel, and distributed learning algorithms. It offers a basic study in the development of biologically-inspired algorithms which merge inspiration from biology with known, standard computing technology to examine robust methods of computing. This thesis begins by detailing key interactions found within the immune system that provide inspiration for the development of a learning system. It then exploits the use of more processing power for the development of faster algorithms. This leads to the exploration of distributed computing resources for the examination of more biologically plausible systems. This thesis offers the following main contributions. The components of the immune system that exhibit the capacity for learning are detailed. A framework for discussing learning algorithms is proposed. Three properties of every learning algorithm-memory, adaptation, and decision-making-are identified for this framework, and traditional learning algorithms are placed in the context of this framework. An investigation into the use of immunological components for learning is provided. This leads to an understanding of these components in terms of the learning framework. A simplification of the Artificial Immune Recognition System (AIRS) immune-inspired learning algorithm is provided by employing affinity-dependent somatic hypermutation. A parallel version of the Clonal Selection Algorithm (CLONALG) immune learning algorithm is developed. It is shown that basic parallel computing techniques can provide computational benefits for this algorithm. Exploring this technology further, a parallel version of AIRS is offered. It is shown that applying these same parallel computing techniques to AIRS, while less scalable than when applied to CLONALG, still provides computational gains. A distributed approach to AIRS is offered, and it is argued that this approach provides a more biologically appealing model. The simple distributed approach is proposed in terms of an initial step toward a more complex, distributed system. Biological immune systems exhibit complex cellular interactions. The mechanisms of these interactions, while often poorly understood, hint at an extremely powerful information processing/problem solving system. This thesis demonstrates how the use of immunological principles coupled with standard computing technology can lead to the development of robust, biologically inspired learning algorithms.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore