12,773 research outputs found

    A hybrid model for mapping simplified seismic response via a GIS-metamodel approach

    Get PDF
    In earthquake-prone areas, site seismic response due to lithostratigraphic sequence plays a key role in seismic hazard assessment. A hybrid model, consisting of GIS and metamodel (model of model) procedures, was introduced aimed at estimating the 1-D spatial seismic site response in accordance with spatial variability of sediment parameters. Inputs and outputs are provided and processed by means of an appropriate GIS model, named GIS Cubic Model (GCM). This consists of a block-layered parametric structure aimed at resolving a predicted metamodel by means of pixel to pixel vertical computing. The metamodel, opportunely calibrated, is able to emulate the classic shape of the spectral acceleration response in relation to the main physical parameters that characterize the spectrum itself. Therefore, via the GCM structure and the metamodel, the hybrid model provides maps of normalized acceleration response spectra. The hybrid model was applied and tested on the built-up area of the San Giorgio del Sannio village, located in a high-risk seismic zone of southern Italy. Efficiency tests showed a good correspondence between the spectral values resulting from the proposed approach and the 1-D physical computational models. Supported by lithology and geophysical data and corresponding accurate interpretation regarding modelling, the hybrid model can be an efficient tool in assessing urban planning seismic hazard/risk. © Author(s) 2014

    Flat Spectrum X-ray Emission from the Direction of a Molecular Cloud Associated with SNR RX J1713.7-3946

    Get PDF
    We report on the discovery of a hard X-ray source with ASCA from a molecular cloud in the vicinity of the SNR RX J1713.7-3946. The energy spectrum (1--10 keV) shows a flat continuum which is described by a power-law with photon index 1.0 +-0.4. We argue that this unusually flat spectrum can be best interpreted in terms of characteristic bremsstrahlung emission from the ionization-loss-flattened distribution of either sub-relativistic protons or mildly-relativistic electrons. The strong shock of the SNR RX J1713.7-3946, which presumably interacts with the molecular cloud, as evidenced by observations of CO-lines, seems to be a natural site of acceleration of such sub- or mildly-relativistic nonthermal particles. However, the observed X-ray luminosity of 1.7 10^35 erg/s (for 6 kpc distance) requires that a huge kinetic energy of about 10^50 erg be released in the form of nonthermal particles to illuminate the cloud. The shock-acceleration at RX J1713.7-3946 can barely satisfy this energetic requirement, unless (i) the source is located much closer than 6 kpc and/or (ii) the mechanical energy of the explosion essentially exceeds 10^51 erg. Another possibility would be that an essential part of the "lost" energy is somehow converted to plasma waves, which return this energy to nonthermal particles through their turbulent reacceleration on plasma waves. Irrespective of mechanisms responsible for production of high-energy particles, the flat X-ray emission seems to be a signature of a new striking energetic phenomenon in molecular clouds.Comment: 6 pages, 2 figures, Accepted for publication in PAS

    COMPILATION OF ACTIVE FAULT DATA IN PORTUGAL FOR USE IN SEISMIC HAZARD ANALYSIS

    Get PDF
    To estimate where future earthquakes are likely to occur, it is essential to combine information about past earthquakes with knowledge about the location and seismogenic properties of active faults. For this reason, robust probabilistic seismic hazard analysis (PSHA) integrates seismicity and active fault data. Existing seismic hazard assessments for Portugal rely exclusively on seismicity data and do not incorporate data on active faults. Project SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded initiative (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are developing a fully-parameterized active fault database for Portugal that incorporates existing compilations, updated according to the most recent publications. The seismogenic source model derived for SHARE will be the first model for Portugal to include fault data and follow an internationally standardized approach. This model can be used to improve both seismic hazard and risk analyses and will be combined with the Spanish database for use in Iberian- and European-scale assessments

    SiSeRHMap v1.0: A simulator for mapped seismic response using a hybrid model

    Get PDF
    SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches 5 and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear 10 equivalent analysis produces acceleration response spectra of shear wave velocitythickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg–Marquardt Algorithm (LMA) as the final optimizer. In the fi15 nal step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets 20 of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique

    An ASCA Study of the High Luminosity SNR G349.7+0.2

    Get PDF
    We present ASCA observations of supernova remnant (SNR) G349.7+0.2. The remnant has an irregular shell morphology and is interacting with a molecular cloud, evident from the presence of OH(1720 MHz) masers and shocked molecular gas. The X-ray morphology is consistent with that at radio wavelengths, with a distinct enhancement in the south. The X-ray emission from the SNR is well described by a model of a thermal plasma which has yet to reach ionization equilibrium. The hydrogen column of ~6.0 X 10^{22} cm^{-2} is consistent with the large distance to the remnant of ~22 kpc estimated from the maser velocities. We derive an X-ray luminosity of L_x(0.5-10.0 keV)= 1.8 X 10^{37} d_{22}^2 erg/s, which makes G349.7+0.2 one of the most X-ray luminous shell-type SNRs known in the Galaxy. The age of the remnant is estimated to be about 2800 yrs. The ambient density and pressure conditions appear similar to those inferred for luminous compact SNRs found in starburst regions of other galaxies, and provides support for the notion that these may be the result of SNR evolution in the vicinity of dense molecular clouds.Comment: 5 pages, 3 figures. Accepted for publication in Ap

    Risk Factors for Development of Chronic Kidney Disease in Cats

    Get PDF
    BACKGROUND: Identification of risk factors for development of chronic kidney disease (CKD) in cats may aid in its earlier detection. HYPOTHESIS/OBJECTIVES: Evaluation of clinical and questionnaire data will identify risk factors for development of azotemic CKD in cats. ANIMALS: One hundred and forty‐eight client‐owned geriatric (>9 years) cats. METHODS: Cats were recruited into the study and followed longitudinally for a variable time. Owners were asked to complete a questionnaire regarding their pet at enrollment. Additional data regarding dental disease were obtained when available by development of a dental categorization system. Variables were explored in univariable and multivariable Cox regression models. RESULTS: In the final multivariable Cox regression model, annual/frequent vaccination (P value, .003; hazard ratio, 5.68; 95% confidence interval, 1.83–17.64), moderate dental disease (P value, .008; hazard ratio, 13.83; 95% confidence interval, 2.01–94.99), and severe dental disease (P value, .001; hazard ratio, 35.35; 95% confidence interval, 4.31–289.73) predicted development of azotemic CKD. CONCLUSION: Our study suggests independent associations between both vaccination frequency and severity of dental disease and development of CKD. Further studies to explore the pathophysiological mechanism of renal injury for these risk factors are warranted

    Expedition 302 geophysics: integrating past data with new results

    Get PDF
    In preparation for IODP Expedition 302, Arctic Coring Expedition (ACEX), a site survey database comprising geophysical and geological data from the Lomonosov Ridge was compiled. The accumulated database includes data collected from ice islands, icebreakers, and submarines from 1961 to 2001. In addition, seismic reflection profiles were collected during Expedition 302 that complement the existing seismic reflection data and facilitate integration between the acoustic stratigraphy and the Expedition 302 drill cores. An overview of these data is presented in this chapter.It is well recognized that collecting geophysical data in ice-covered seas, in particular the Arctic Ocean, is a challenging endeavor. This is because much of the Arctic Ocean is continuously covered with ice thicknesses that vary from 1 to 6 m. Over the continental shelves, sea ice can be absent during summer months, but it is present year-round in the central basins. This ice cover is the most dominant feature of the Arctic Ocean environment. It circulates in the ocean basin in two main circulation patterns: the Transpolar Drift and the Beaufort Gyre (see the "Expedition 302 summary" chapter; Rudels et al., 1996).Expedition 302 sites are located within the less severe of these two ice circulation systems, the Transpolar Drift, which primarily moves sea ice from the shelves where it is formed (the Laptev and East Siberian Seas) across the basin and exits through the Fram Strait. During late summer, concentrations of Arctic sea ice can be <100% (10/10 ice cover), making it possible for icebreakers to operate. Average ice concentrations in the central Arctic Ocean during summer months can locally vary from partially open water (6/10) to completely ice covered (10/10). This sea-ice cover can move at speeds up to 0.5 kt.Early Arctic Ocean geophysical exploration was performed from ice-drift stations (Weber and Roots, 1990). However, the tracks from these drifting ice stations were controlled "by the whims of nature" (Jackson et al., 1990), preventing detailed, systematic surveys of predetermined target areas. These ice-drift stations were set up on stable icebergs that were trapped in sea ice and moved generally with the large drift patterns, but locally they were erratic, so preselected locations could not be surveyed. In the late 1980s, single icebreakers began to be used for oceanographic survey work in the Arctic Ocean. Between 1991 and 2001, four scientific icebreaker expeditions to the Lomonosov Ridge took place. These cruises all experienced local sea-ice conditions varying between 8/10 and 10/10. During these expeditions, towed geophysical equipment was occasionally damaged or lost, either because of a rapidly closing wake caused by local ice pressure or because ice had cut the air gun array.Conventionally powered icebreakers reached as far as the North Pole for the first time during the 1991 Expedition (Andersen and Carlsonn, 1992; FĂŒtterer, 1992). Geophysical results from this expedition collected two important reflection profiles, AWI-91090 and AWI-91091, that crossed the Lomonosov Ridge between 87° and 88°N. These profiles imaged a ~450 m thick, well-stratified and apparently undisturbed drape of sediments overlying a prominent acoustic unconformity (Jokat et al., 1992) that spawned the idea to conduct a paleoceanographic drilling expedition to this Ridge.The use of US Navy nuclear submarines for geophysical mapping was implemented through the Science Ice Exercise program (SCICEX) (Newton, 2000). The development of the Seafloor Characterization and Mapping Pods (SCAMP), which hold a Chirp subbottom profiler, swath bathymetric profiler, and side scan sonar, was an essential part of the SCICEX program (Chayes et al., 1996). In 1999, the Lomonosov Ridge geophysical database was augmented with acoustic data acquired during the SCICEX program using the SCAMP system mounted on the US nuclear submarine USS Hawkbill (Edwards and Coakley, 2003)

    Thermal broadening of the Coulomb blockade peaks in quantum Hall interferometers

    Full text link
    We demonstrate that the differential magnetic susceptibility of a fractional quantum Hall disk, representing a Coulomb island in a Fabry--Perot interferometer, is exactly proportional to the island's conductance and its paramagnetic peaks are the equilibrium counterparts of the Coulomb blockade conductance peaks. Using as a thermodynamic potential the partition functions of the edge states' effective conformal field theory we find the positions of the Coulomb blockade peaks, when the area of the island is varied, the modulations of the distance between them as well as the thermal decay and broadening of the peaks when temperature is increased. The finite-temperature estimates of the peak's heights and widths could give important information about the experimental observability of the Coulomb blockade. In addition, the predicted peak asymmetry and displacement at finite temperature due to neutral multiplicities could serve to distinguish different fractional quantum Hall states with similar zero-temperature Coulomb blockade patterns.Comment: 6 pages, 6 figures; published versio

    GEOGRAPHICAL INFORMATION SYSTEM FOR TOWNPLANNING LANDMARKS TOURISTIC USING AND PRESERVING

    Get PDF
    The center of the city usually forms its image and uniqueness among the other cities of a country, and possibly among the cities of the whole world. Every city has its own landmarks; in Ukraine big part of them are of Soviet heritage. For example, in Kharkiv there is the Ordzhonykydzevskij region that was formed in the years 20-30s of ?? century. The most interesting thing is that there are several central districts between the side-street called “Peace” and boulevard of Frunze. The districts started to be built in 1930 as a so-called socialistic small town-satellite “New Kharkiv”. This socialistic town should have been a place for workers of recently built Kharkiv tractor factory to live in. According to the project all the houses in the districts should have been connected by transitions, which were planned to be built from the reinforced concrete and glass at the level of the second floor (it was not realized because of lack of money). Apartments in the “socialistic paradise” should not have had the specially equipped kitchens: all the inhabitants of “New Kharkiv” (planned number of about 50 thousand people) were to be fully served by establishments of public food consumption - so called “factory-kitchens”.Geographical Information System; Landmark; Town-planning; City.
    • 

    corecore