562 research outputs found

    NATURAL CONVECTIVE HEAT TRANSFER ANALYSIS NEAR A MOVING INFINITE VERTICAL POROUS PLATE WITH NEWTONIAN HEATING

    Get PDF
    The natural convective flow due to heat and mass transfer along an impulsively started vertical porous plate has numerous applications in engineering and technology. For example, water filtration in agriculture engineering, distillation, oil cracking, in nuclear reactors, ionization of liquids, etc. In this thesis, the free convection heat and mass transfer flow past an impulsively started infinite vertical porous plate with Newtonian heating is studied

    Magnetohydrodynamic free convection boundary layer Flow of non-Newtonian tangent hyperbolic fluid from a vertical permeable cone with variable temperature

    Get PDF
    The nonlinear, non-isothermal steady-state boundary layer flow and heat transfer of an incompressible tangent hyperbolic non-Newtonian (viscoelastic) fluid from a vertical permeable cone with magnetic field are studied. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using the second-order accurate implicit finite difference Keller-box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely a Weissenberg number (We), rheological power law index (m), surface temperature exponent (n), Prandtl number (Pr), magnetic parameter (M) suction/injection parameter (fw) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime, is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is observed that velocity, surface heat transfer rate and local skin friction are reduced with increasing Weissenberg number, but temperature is increased. Increasing m enhances velocity and surface heat transfer rate but reduces temperature and local skin friction. An increase in non-isothermal power law index (n) is observed to decrease the velocity and temperature. Increasing magnetic parameter (M) is found to decrease the velocity and increase the temperature. Overall, the primary influence on free convection is sustained through the magnetic body force parameter, M, and also the surface mass flux (injection/suction) parameter, fw. The rheological effects, while still prominent, are not as dramatic. Boundary layers (both hydrodynamic and thermal) are, therefore, most strongly modified by the applied magnetic field and wall mass flux effect. The study is pertinent to smart coatings, e.g., durable paints, aerosol deposition processing and water-based solvent thermal treatment in chemical engineering

    Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions

    Get PDF
    Energy conversion under conduction, convection, diffusion and radiation has been studied for MHD free convection heat transfer of a steady laminar boundary-layer flow past a moving permeable non-linearly extrusion stretching sheet. The nonlinear Rosseland thermal radiation flux model, velocity slip, thermal and mass convective boundary conditions are considered to obtain a model with fundamental applications to real world energy systems. The Navier slip, thermal and mass convective boundary conditions are taken into account. Similarity differential equations with corresponding boundary conditions for the flow problem, are derived, using a scaling group of transformation. The transformed model is shown to be controlled by magnetic field, conduction-convection, convection-diffusion, suction/injection, radiation-conduction, temperature ratio, Prandtl number, Lewis number, buoyancy ratio and velocity slip parameters. The transformed non-dimensional boundary value problem comprises a system of nonlinear ordinary differential equations and physically realistic boundary conditions, and is solved numerically using the efficient Runge-Kutta-Fehlberg fourth fifth order numerical method, available in Maple17 symbolic software. Validation of results is achieved with previous simulations available in the published literature. The obtained results are displayed both in graphical and tabular form to exhibit the effect of the controlling parameters on the dimensionless velocity, temperature and concentration distributions. The current study has applications in high temperature materials processing utilizing magnetohydrodynamics, improved performance of MHD energy generator wall flows and also magnetic-microscale fluid devices

    Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption

    Get PDF
    A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat generation/absorption. The transformed conservation equations for linear momentum, heat and mass are solved numerically subject to the realistic boundary conditions using the second-order accurate implicit finite-difference Keller Box Method. The numerical code is validated with previous studies. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low-density polymer materials processing

    Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid

    Get PDF
    An analysis is carried out for the steady two-dimensional mixed convection flow adjacent to a stretching vertical sheet immersed in an incompressible electrically conducting micropolar fluid. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the leading edge. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically using a finite difference scheme known as the Keller box method. The effects of magnetic and material parameters on the flow and heat transfer characteristics are discussed. It is found that the magnetic field reduces both the skin friction coefficient and the heat transfer rate at the surface for any given K and λ. Conversely, both of them increase as the material parameter increases for fixed values of M and λ

    Numerical study of non-Newtonian polymeric boundary layer flow and heat transfer from a permeable horizontal isothermal cylinder

    Get PDF
    In this article, we investigate the nonlinear steady state boundary layer flow and heat transfer of an incompressible Jeffery non-Newtonian fluid from a permeable horizontal isothermal cylinder. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely with Deborah number (De), surface suction parameter (S), Prandtl number (Pr), ratio of relaxation to retardation times (λ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. It is found that the velocity is reduced with increasing Deborah number whereas temperature is enhanced. Increasing λ enhances the velocity but reduces the temperature. The heat transfer rates is found to be depressed with increasing Deborah number, De, and enhanced with increasing λ. Local skin friction is found to be decreased with a rise in Deborah number whereas it is elevated with increasing values of relaxation to retardation time ratio (λ). Increasing suction decelerates the flow and cools the boundary layer i.e. reduces temperatures. With increasing tangential coordinate, the flow is also decelerated whereas the temperatures are enhanced. The simulation is relevant to polymer coating thermal processing. Polymeric enrobing flows are important in industrial manufacturing technology and process systems. Such flows are non-Newtonian. Motivated by such applications, we did the present problem

    Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone

    Get PDF
    In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty of the present work. The transformed conservation equations for linear momentum, energy and concentration are solved numerically under physically viable boundary conditions using the finite-differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation time (λ), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) and dimensionless tangential coordinate (Ѯ) on velocity, surface temperature, concentration, local skin friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concentration are increased slightly. Increasing λ enhance velocity however reduces temperature and concentration slightly. The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values of λ. The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values of λ. Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces temperature and also concentration. The study is relevant to chemical engineering systems, solvent and polymeric processes

    Effect of Non-Linear Density Variation on Non-Darcy Convective Heat and Mass Transfer with Newtonian Cooling

    Get PDF
    We investigate the effect of Non-linear density temperature relation on convective heat and mass transfer flow past stretching sheet with Soret and Dufour effects. The Non-linear coupled governing equations have been solved by fourth –order Runge-Kutta method. The velocity, temperature and concentration, skin friction and rate of heat and mass transfer have been discussed for different parametric variations.  We observed that an increase in the density ration γ reduces the velocity, temperature and concentration. Keywords: Heat and Mass transfer, Non-linear temperature relation, Chemical Reaction, Soret and Dufour Effects, Heat sources

    Mathematical models for heat and mass transfer in nanofluid flows.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.The behaviour and evolution of most physical phenomena is often best described using mathematical models in the form of systems of ordinary and partial differential equations. A typical example of such phenomena is the flow of a viscous impressible fluid which is described by the Navier-Stokes equations, first derived in the nineteenth century using physical approximations and the principles of mass and momentum conservation. The flow of fluids, and the growth of flow instabilities has been the subject of many investigations because fluids have wide uses in engineering and science, including as carriers of heat, solutes and aggregates. Conventional heat transfer fluids used in engineering applications include air, water and oil. However, each of these fluids has an inherently low thermal conductivity that severely limit heat exchange efficiency. Suspension of nanosized solid particles in traditional heat transfer fluids significantly increases the thermophysical properties of such fluids leading to better heat transfer performance. In this study we present theoretical models to investigate the flow of unsteady nanofluids, heat and mass transport in porous media. Different flow configurations are assumed including an inclined cylinder, a moving surface, a stretching cone and the flow of a polymer nanocomposite modeled as an Oldroyd-B fluid. The nanoparticles assumed include copper, silver and titanium dioxide with water as the base fluid. Most recent boundary-layer nanofluid flow studies assume that the nanoparticle volume fraction can be actively controlled at a bounding solid surface, similar to temperature controls. However, in practice, such controls present significant challenges, and may, in practice, not be possible. In this study the nanoparticle flux at the boundary surface is assumed to be zero. Unsteadiness in fluid flows leads to complex system of partial differential equations. These transport equations are often highly nonlinear and cannot be solved to find exact solutions that describe the evolution of the physical phenomena modeled. A large number of numerical or semi-numerical techniques exist in the literature for finding solutions of nonlinear systems of equations. Some of these methods may, however be subject to certain limitations including slow convergence rates and a small radius of convergence. In recent years, innovative linearization techniques used together with spectral methods have been suggested as suitable tools for solving systems of ordinary and partial differential equations. The techniques which include the spectral local linearization method, spectral relaxation method and the spectral quasiliearization method are used in this study to solve the transport equations, and to determine how the flow characteristics are impacted by changes in certain important physical and fluid parameters. The findings show that these methods give accurate solutions and that the speed of convergence of solutions is comparable with methods such as the Keller-box, Galerkin, and other finite difference or finite element methods. The study gives new insights, and result on the influence of certain events, such as internal heat generation, velocity slip, nanoparticle thermophoresis and random motion on the flow structure, heat and mass transfer rates and the fluid properties in the case of a nanofluid
    • …
    corecore