11 research outputs found

    Development of Machine Learning Based Analytical Tools for Pavement Performance Assessment and Crack Detection

    Get PDF
    Pavement Management System (PMS) analytical tools mainly consist of pavement condition investigation and evaluation tools, pavement condition rating and assessment tools, pavement performance prediction tools, treatment prioritizations and implementation tools. The effectiveness of a PMS highly depends on the efficiency and reliability of its pavement condition evaluation tools. Traditionally, pavement condition investigation and evaluation practices are based on manual distress surveys and performance level assessments, which have been blamed for low efficiency low reliability. Those kinds of manually surveys are labor intensive and unsafe due to proximity to live traffic conditions. Meanwhile, the accuracy can be lower due to the subjective nature of the evaluators. Considering these factors, semiautomated and automated pavement condition evaluation tools had been developed for several years. In current years, it is undoubtable that highly advanced computerized technologies have resulted successful applications in diverse engineering fields. Therefore, these techniques can be successfully incorporated into pavement condition evaluation distress detection, the analytical tools can improve the performance of existing PMSs. Hence, this research aims to bridge the gaps between highly advanced Machine Learning Techniques (MLTs) and the existing analytical tools of current PMSs. The research outputs intend to provide pavement condition evaluation tools that meet the requirement of high efficiency, accuracy, and reliability. To achieve the objectives of this research, six pavement damage condition and performance evaluation methodologies are developed. The roughness condition of pavement surface directly influences the riding quality of the users. International Roughness Index (IRI) is used worldwide by research institutions, pavement condition evaluation and management agencies to evaluate the roughness condition of the pavement. IRI is a time-dependent variable which generally tends to increase with the increase of the pavement service life. In this consideration, a multi-granularity fuzzy time series analysis based IRI prediction model is developed. Meanwhile, Particle Swarm Optimization (PSO) method is used for model optimization to obtain satisfactory IRI prediction results. Historical IRI data extracted from the InfoPave website have been used for training and testing the model. Experiment results proved the effectiveness of this method. Automated pavement condition evaluation tools can provide overall performance indices, which can then be used for treatment planning. The calculations of those performance indices are required for surface distress level and roughness condition evaluations. However, pavement surface roughness conditions are hard to obtain from surface image indicators. With this consideration, an image indicators-based pavement roughness and the overall performance prediction tools are developed. The state-of-the-art machine learning technique, XGBoost, is utilized as the main method in model training, validating and testing. In order to find the dominant image indicators that influence the pavement roughness condition and the overall performance conditions, the comprehensive pavement performance evaluation data collected by ARAN 900 are analyzed. Back Propagation Neural Network (BPNN) is used to develop the performance prediction models. On this basis, the mean important values (MIVs) for each input factor are calculated to evaluate the contributions of the input indicators. It has been observed that indicators of the wheel path cracking have the highest MIVs, which emphasizes the importance of cracking-focused maintenance treatments. The same issue is also found that current automated pavement condition evaluation systems only include the analysis of pavement surface distresses, without considering the structural capacity of the actual pavement. Hence, the structural performance analysis-based pavement performance prediction tools are developed using the Support Vector Machines (SVMs). To guarantee the overall performance of the proposed methodologies, heuristic methods including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are selected to optimize the model. The experiments results show a promising future of machine learning based pavement structural performance prediction. Automated pavement condition analyzers usually detect pavement surface distress through the collected pavement surface images. Then, distress types, severities, quantities, and other parameters are calculated for the overall performance index calculation. Cracks are one of the most important pavement surface distresses that should be quantified. Traditional approaches are less accurate and efficient in locating, counting and quantifying various types of cracks initialed on the pavement surface. An integrated Crack Deep Net (CrackDN) is developed based on deep learning technologies. Through model training, validation and testing, it has proved that CrackDN can detect pavement surface cracks on complex background with high accuracy. Moreover, the combination of box-level pavement crack locating, and pixel-level crack calculation can achieve comprehensive crack analysis. Thereby, more effective maintenance treatments can be assigned. Hence, a methodology regarding pixel-level crack detection which is called CrackU-net, is proposed. CrackU-net is composed of several convolutional, maxpooling, and up-convolutional layers. The model is developed based on the innovations of deep learning-based segmentation. Pavement crack data are collected by multiple devices, including automated pavement condition survey vehicles, smartphones, and action cameras. The proposed CrackU-net is tested on a separate crack image set which has not been used for training the model. The results demonstrate a promising future of use in the PMSs. Finally, the proposed toolboxes are validated through comparative experiments in terms of accuracy (precision, recall, and F-measure) and error levels. The accuracies of all those models are higher than 0.9 and the errors are lower than 0.05. Meanwhile, the findings of this research suggest that the wheel path cracking should be a priority when conducting maintenance activity planning. Benefiting from the highly advanced machine learning technologies, pavement roughness condition and the overall performance levels have a promising future of being predicted by extraction of the image indicators. Moreover, deep learning methods can be utilized to achieve both box-level and pixel-level pavement crack detection with satisfactory performance. Therefore, it is suggested that those state-of-the-art toolboxes be integrated into current PMSs to upgrade their service levels

    Development of Machine Learning Based Analytical Tools for Pavement Performance Assessment and Crack Detection

    Get PDF
    Pavement Management System (PMS) analytical tools mainly consist of pavement condition investigation and evaluation tools, pavement condition rating and assessment tools, pavement performance prediction tools, treatment prioritizations and implementation tools. The effectiveness of a PMS highly depends on the efficiency and reliability of its pavement condition evaluation tools. Traditionally, pavement condition investigation and evaluation practices are based on manual distress surveys and performance level assessments, which have been blamed for low efficiency low reliability. Those kinds of manually surveys are labor intensive and unsafe due to proximity to live traffic conditions. Meanwhile, the accuracy can be lower due to the subjective nature of the evaluators. Considering these factors, semiautomated and automated pavement condition evaluation tools had been developed for several years. In current years, it is undoubtable that highly advanced computerized technologies have resulted successful applications in diverse engineering fields. Therefore, these techniques can be successfully incorporated into pavement condition evaluation distress detection, the analytical tools can improve the performance of existing PMSs. Hence, this research aims to bridge the gaps between highly advanced Machine Learning Techniques (MLTs) and the existing analytical tools of current PMSs. The research outputs intend to provide pavement condition evaluation tools that meet the requirement of high efficiency, accuracy, and reliability. To achieve the objectives of this research, six pavement damage condition and performance evaluation methodologies are developed. The roughness condition of pavement surface directly influences the riding quality of the users. International Roughness Index (IRI) is used worldwide by research institutions, pavement condition evaluation and management agencies to evaluate the roughness condition of the pavement. IRI is a time-dependent variable which generally tends to increase with the increase of the pavement service life. In this consideration, a multi-granularity fuzzy time series analysis based IRI prediction model is developed. Meanwhile, Particle Swarm Optimization (PSO) method is used for model optimization to obtain satisfactory IRI prediction results. Historical IRI data extracted from the InfoPave website have been used for training and testing the model. Experiment results proved the effectiveness of this method. Automated pavement condition evaluation tools can provide overall performance indices, which can then be used for treatment planning. The calculations of those performance indices are required for surface distress level and roughness condition evaluations. However, pavement surface roughness conditions are hard to obtain from surface image indicators. With this consideration, an image indicators-based pavement roughness and the overall performance prediction tools are developed. The state-of-the-art machine learning technique, XGBoost, is utilized as the main method in model training, validating and testing. In order to find the dominant image indicators that influence the pavement roughness condition and the overall performance conditions, the comprehensive pavement performance evaluation data collected by ARAN 900 are analyzed. Back Propagation Neural Network (BPNN) is used to develop the performance prediction models. On this basis, the mean important values (MIVs) for each input factor are calculated to evaluate the contributions of the input indicators. It has been observed that indicators of the wheel path cracking have the highest MIVs, which emphasizes the importance of cracking-focused maintenance treatments. The same issue is also found that current automated pavement condition evaluation systems only include the analysis of pavement surface distresses, without considering the structural capacity of the actual pavement. Hence, the structural performance analysis-based pavement performance prediction tools are developed using the Support Vector Machines (SVMs). To guarantee the overall performance of the proposed methodologies, heuristic methods including Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are selected to optimize the model. The experiments results show a promising future of machine learning based pavement structural performance prediction. Automated pavement condition analyzers usually detect pavement surface distress through the collected pavement surface images. Then, distress types, severities, quantities, and other parameters are calculated for the overall performance index calculation. Cracks are one of the most important pavement surface distresses that should be quantified. Traditional approaches are less accurate and efficient in locating, counting and quantifying various types of cracks initialed on the pavement surface. An integrated Crack Deep Net (CrackDN) is developed based on deep learning technologies. Through model training, validation and testing, it has proved that CrackDN can detect pavement surface cracks on complex background with high accuracy. Moreover, the combination of box-level pavement crack locating, and pixel-level crack calculation can achieve comprehensive crack analysis. Thereby, more effective maintenance treatments can be assigned. Hence, a methodology regarding pixel-level crack detection which is called CrackU-net, is proposed. CrackU-net is composed of several convolutional, maxpooling, and up-convolutional layers. The model is developed based on the innovations of deep learning-based segmentation. Pavement crack data are collected by multiple devices, including automated pavement condition survey vehicles, smartphones, and action cameras. The proposed CrackU-net is tested on a separate crack image set which has not been used for training the model. The results demonstrate a promising future of use in the PMSs. Finally, the proposed toolboxes are validated through comparative experiments in terms of accuracy (precision, recall, and F-measure) and error levels. The accuracies of all those models are higher than 0.9 and the errors are lower than 0.05. Meanwhile, the findings of this research suggest that the wheel path cracking should be a priority when conducting maintenance activity planning. Benefiting from the highly advanced machine learning technologies, pavement roughness condition and the overall performance levels have a promising future of being predicted by extraction of the image indicators. Moreover, deep learning methods can be utilized to achieve both box-level and pixel-level pavement crack detection with satisfactory performance. Therefore, it is suggested that those state-of-the-art toolboxes be integrated into current PMSs to upgrade their service levels

    Cyberstalking Victimization Model Using Criminological Theory: A Systematic Literature Review, Taxonomies, Applications, Tools, and Validations

    Full text link
    Cyberstalking is a growing anti-social problem being transformed on a large scale and in various forms. Cyberstalking detection has become increasingly popular in recent years and has technically been investigated by many researchers. However, cyberstalking victimization, an essential part of cyberstalking, has empirically received less attention from the paper community. This paper attempts to address this gap and develop a model to understand and estimate the prevalence of cyberstalking victimization. The model of this paper is produced using routine activities and lifestyle exposure theories and includes eight hypotheses. The data of this paper is collected from the 757 respondents in Jordanian universities. This review paper utilizes a quantitative approach and uses structural equation modeling for data analysis. The results revealed a modest prevalence range is more dependent on the cyberstalking type. The results also indicated that proximity to motivated offenders, suitable targets, and digital guardians significantly influences cyberstalking victimization. The outcome from moderation hypothesis testing demonstrated that age and residence have a significant effect on cyberstalking victimization. The proposed model is an essential element for assessing cyberstalking victimization among societies, which provides a valuable understanding of the prevalence of cyberstalking victimization. This can assist the researchers and practitioners for future research in the context of cyberstalking victimization

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia
    corecore