45 research outputs found

    Feature Extraction Analysis for Hidden Markov Models in Sundanese Speech Recognition

    Get PDF
    Sundanese language is one of the popular languages in Indonesia. Thus, research in Sundanese language becomes essential to be made. It is the reason this study was being made. The vital parts to get the high accuracy of recognition are feature extraction and classifier. The important goal of this study was to analyze the first one. Three types of feature extraction tested were Linear Predictive Coding (LPC), Mel Frequency Cepstral Coefficients (MFCC), and Human Factor Cepstral Coefficients (HFCC). The results of the three feature extraction became the input of the classifier. The study applied Hidden Markov Models as its classifier. However, before the classification was done, we need to do the quantization. In this study, it was based on clustering. Each result was compared against the number of clusters and hidden states used. The dataset came from four people who spoke digits from zero to nine as much as 60 times to do this experiments. Finally, it showed that all feature extraction produced the same performance for the corpus used

    Intelligent system for spoken term detection using the belief combination

    Get PDF
    Spoken Term Detection (STD) can be considered as a sub-part of the automatic speech recognition which aims to extract the partial information from speech signals in the form of query utterances. A variety of STD techniques available in the literature employ a single source of evidence for the query utterance match/mismatch determination. In this manuscript, we develop an acoustic signal processing based approach for STD that incorporates a number of techniques for silence removal, dynamic noise filtration, and evidence combination using Dempster-Shafer Theory (DST). A ‘spectral-temporal features based voiced segment detection’ and ‘energy and zero cross rate based unvoiced segment detection’ are built to remove the silence segments in the speech signal. Comprehensive experiments have been performed on large speech datasets and consequently satisfactory results have been achieved with the proposed approach. Our approach improves the existing speaker dependent STD approaches, specifically the reliability of query utterance spotting by combining the evidences from multiple belief sources

    The acoustic dissection of cough: diving into machine listening-based COVID-19 analysis and detection

    Get PDF
    OBJECTIVES: The coronavirus disease 2019 (COVID-19) has caused a crisis worldwide. Amounts of efforts have been made to prevent and control COVID-19′s transmission, from early screenings to vaccinations and treatments. Recently, due to the spring up of many automatic disease recognition applications based on machine listening techniques, it would be fast and cheap to detect COVID-19 from recordings of cough, a key symptom of COVID-19. To date, knowledge of the acoustic characteristics of COVID-19 cough sounds is limited but would be essential for structuring effective and robust machine learning models. The present study aims to explore acoustic features for distinguishing COVID-19 positive individuals from COVID-19 negative ones based on their cough sounds. METHODS: By applying conventional inferential statistics, we analyze the acoustic correlates of COVID-19 cough sounds based on the ComParE feature set, i.e., a standardized set of 6,373 acoustic higher-level features. Furthermore, we train automatic COVID-19 detection models with machine learning methods and explore the latent features by evaluating the contribution of all features to the COVID-19 status predictions. RESULTS: The experimental results demonstrate that a set of acoustic parameters of cough sounds, e.g., statistical functionals of the root mean square energy and Mel-frequency cepstral coefficients, bear essential acoustic information in terms of effect sizes for the differentiation between COVID-19 positive and COVID-19 negative cough samples. Our general automatic COVID-19 detection model performs significantly above chance level, i.e., at an unweighted average recall (UAR) of 0.632, on a data set consisting of 1,411 cough samples (COVID-19 positive/negative: 210/1,201). CONCLUSIONS: Based on the acoustic correlates analysis on the ComParE feature set and the feature analysis in the effective COVID-19 detection approach, we find that several acoustic features that show higher effects in conventional group difference testing are also higher weighted in the machine learning models

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the newborn to the adult and elderly. Over the years the initial issues have grown and spread also in other fields of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years in Firenze, Italy. This edition celebrates twenty-two years of uninterrupted and successful research in the field of voice analysis
    corecore