46,000 research outputs found

    Stable and Clumped Isotope Characterization of Authigenic Carbonates in Methane Cold Seep Environments

    Get PDF
    Cold seep environments are characterized by methane-rich fluid migration and discharge at the seafloor. These environments are also intimately linked to microbial communities, which oxidize methane anaerobically, increase alkalinity and promote authigenic carbonate precipitation. We have analyzed a suite of methane-derived authigenic carbonate (MDAC) crusts from the North and Barents Sea using stable and clumped isotopes (δ¹³C, δ¹⁸O, δ⁴⁴Ca, and Δ₄₇) to characterize the sources of fluids as well as the environment of carbonate authigenesis. We additionally assess the potential of MDACs as a Δ₄₇-based paleotemperature archive. The MDACs occur as three main textural-mineralogic types: micritic Mg-calcite cements, micritic aragonite cements and cavity filling aragonite cements. We find that micritic Mg-calcite cements have low δ¹³C_(VPDB) values (−30 to −47‰), high δ⁴⁴Ca_(SW) values (−0.4 to −0.8‰), and Δ₄₇-temperatures (0–6 °C) consistent with shallow sub-seafloor precipitation in isotopic equilibrium. Micritic aragonite cements and cavity filling aragonite cements both have a wider range in δ¹³C_(VPDB) values (−18 to −58‰), lower δ⁴⁴Ca_(SW) values (−0.8 to −1.6‰) and a larger range in Δ₄₇-based apparent temperatures (–2 – 25 °C) with samples displaying equilibrium and disequilibrium clumped isotope values. The range in apparent temperatures as well as δ⁴⁴Ca_(SW) values seen in the aragonite MDACs suggest two kinetic processes: a kinetic isotope effect (KIE) due to the incomplete equilibration of carbon and oxygen isotopes among DIC species from the different sources of DIC (i.e., seawater, methane-sourced DIC and DIC residual to CO₂ degassing or diffusion) and a KIE due to a fast, irreversible precipitation affecting the cations, particularly Ca, bound to carbonate mineral. Our results improve the understanding of kinetic effects on clumped isotope temperatures in MDACs and demonstrate how the multi-isotopic approach combined with textural-mineralogic criteria can be used to identify MDACs for accurate paleotemperature reconstructions

    Phase Stability and Segregation in Alloy 22 Base Metal and Weldments

    Full text link
    The current design of the waste disposal containers relies heavily on encasement in a multi-layered container, featuring a corrosion barrier of Alloy 22, a Ni-Cr-Mo-W based alloy with excellent corrosion resistance over a wide range of conditions. The fundamental concern from the perspective of the Yucca Mountain Project, however, is the inherent uncertainty in the (very) long-term stability of the base metal and welds. Should the properties of the selected materials change over the long service life of the waste packages, it is conceivable that the desired performance characteristics (such as corrosion reistance) will become compromised, leading to premature failure of the system. To address this, we will study the phase stability and solute segregation characteristics of Alloy 22 base metal and welds. A better understanding of the underlying microstructural evolution tendencies, and their connections with corrosion behavior will (in turn) produce a higher confidence in the extrapolated behavior of the container materials over time periods that are not feasibly tested in a laboratory. Additionally, the knowledge gained here may potentially lead to cost savings through development of safe and realistic design constraints and model assumptions throughout the entire disposal system

    Metal oxide nanoparticle based electrochemical sensor for total antioxidant capacity (TAC) detection in wine samples

    Get PDF
    A single-use electrochemical screen-printed electrode is reported based on biomimetic properties of nanoceria particles (CeNPs). The developed tool showed an easy approach compared to the classical spectrophotometric methods reported in literature in terms of ease of use, cost, portability, and unnecessary secondary reagents. The sensor allowed the detection of the total antioxidant capacity (TAC) in wine samples. The sensor has been optimized and characterized electrochemically and then tested with antioxidant compounds occurred in wine samples. The electrochemical CeNPs modified sensor has been used for detection of TAC in white and red commercial wines and the data compared to the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)-based spectrophotometric method. Finally, the obtained results have demonstrated that the proposed sensor was suitable for the simple and quick evaluation of TAC in beverage samples

    Characterization of Ground Water Discharge to Hampton Harbor

    Get PDF
    The project goals were to assess inter-tidal groundwater discharge and concurrent nutrient loading to Hampton Harbor. This will include maps of suspected groundwater discharge zones and measurements of nutrient loading. The principal means of assessment was an aerial survey of the study area during low tide using thermal infrared (TIR) imagery. The TIR imagery was used to detect and locate upwelling groundwater discharge zones within the harbor. The location of groundwater discharge zones as it relates to upgradient land use can be instructive for water quality

    Controllable radio interference for experimental and testing purposes in wireless sensor networks

    Get PDF
    Abstract—We address the problem of generating customized, controlled interference for experimental and testing purposes in Wireless Sensor Networks. The known coexistence problems between electronic devices sharing the same ISM radio band drive the design of new solutions to minimize interference. The validation of these techniques and the assessment of protocols under external interference require the creation of reproducible and well-controlled interference patterns on real nodes, a nontrivial and time-consuming task. In this paper, we study methods to generate a precisely adjustable level of interference on a specific channel, with lowcost equipment and rapid calibration. We focus our work on the platforms carrying the CC2420 radio chip and we show that, by setting such transceiver in special mode, we can quickly and easily generate repeatable and precise patterns of interference. We show how this tool can be extremely useful for researchers to quickly investigate the behaviour of sensor network protocols and applications under different patterns of interference, and we further evaluate its performance
    corecore