266 research outputs found

    Macroscopic Traffic Flow Model Calibration Using Different Optimization Algorithms

    Get PDF
    AbstractThis study tests and compares different optimization algorithms employed for the calibration of a macroscopic traffic flow model. In particular, the deterministic Nelder-Mead algorithm, a stochastic genetic algorithm and the stochastic cross-entropy method are utilized to estimate the parameter values of the METANET model for a particular freeway site, using real traffic data. The resulting models are validated using various traffic data sets and the optimization algorithms are evaluated and compared with respect to the accuracy of the produced models as well as the convergence speed and the required computation time

    Macroscopic Traffic Model Validation of Large Networks and the Introduction of a Gradient Based Solver

    Get PDF
    Traffic models are important for the evaluation of various Intelligent Transport Systems and the development of new traffic infrastructure. In order for this to be done accurately and with confidence the correct parameter values of the model must be identified. The focus of this thesis is the identification and confirmation of these parameters, which is model validation. Validation is performed on two different models; the first-order CTM and the second-order METANET model. The CTM is validated for two UK sites of 7.8 and 21.9 km and METANET for the same two sites using a variety of meta-heuristic algorithms. This is done using a newly developed method to allow for the optimisation method to determine the number of parameters to be used and the spatial extent of their application. This allows for the removal of expert engineering knowledge and ad-hoc decomposition of networks. This thesis also develops a methodology by use of Automatic Differentiation to allow gradient based optimisation to be used. This approach successfully validated the METANET model for the 21.9 km site and also a large network surrounding the city of Manchester of 186.9 km. This proves that gradient based optimisation can be used for the macroscopic traffic model validation problem. In fact the performance of the developed gradient method is superior to the meta-heuristics tested for the same sites. The methodology defined also allows for more data to be obtained from the model such as its Jacobian and the sensitivity of the objective function being used relative to the individual parameters. Space-Time contour plots of this newly acquired data show structures and shock waves that are not visible in the mean speed contour diagrams

    Parallelized Particle and Gaussian Sum Particle Filters for Large Scale Freeway Traffic Systems

    Get PDF
    Large scale traffic systems require techniques able to: 1) deal with high amounts of data and heterogenous data coming from different types of sensors, 2) provide robustness in the presence of sparse sensor data, 3) incorporate different models that can deal with various traffic regimes, 4) cope with multimodal conditional probability density functions for the states. Often centralized architectures face challenges due to high communication demands. This paper develops new estimation techniques able to cope with these problems of large traffic network systems. These are Parallelized Particle Filters (PPFs) and a Parallelized Gaussian Sum Particle Filter (PGSPF) that are suitable for on-line traffic management. We show how complex probability density functions of the high dimensional trafc state can be decomposed into functions with simpler forms and the whole estimation problem solved in an efcient way. The proposed approach is general, with limited interactions which reduces the computational time and provides high estimation accuracy. The efciency of the PPFs and PGSPFs is evaluated in terms of accuracy, complexity and communication demands and compared with the case where all processing is centralized

    A Dynamic Competition Control Strategy for Freeway Merging Region Balancing Individual Behaviour and Traffic Efficiency

    Get PDF
    An integrated control strategy is considered in this paper with the aim of solving congestion in freeway merging regions during peak hours. Merging regions discussed in this paper include the mainline and on-ramp. Traditional research mainly focuses on the efficiency of traffic, ignoring the experience of on-ramp drivers and passengers. Accordingly, a dynamic competition control strategy is proposed to balance individual behaviour and traffic efficiency. First, the concept of the congestion index is introduced, which is expressed by the queue length and the speed parameter of the merging region. The congestion index is used to balance the priorities of the vehicles from the mainline and on-ramp into the merging region in order to avoid poor individual behaviour of on-ramp drivers due to the long-time waiting. Additionally, a nonlinear optimal control approach integrating variable speed limits control and ramp metering is proposed to minimize the total time spent and the maximum traffic flow. The integrated control approach proposed in this paper is tested by simulation which is calibrated using field data. The results indicate that the integrated control approach can effectively shorten the total delay and enhance the traffic service level.</p

    Reinforcement Learning with Model Predictive Control for Highway Ramp Metering

    Full text link
    In the backdrop of an increasingly pressing need for effective urban and highway transportation systems, this work explores the synergy between model-based and learning-based strategies to enhance traffic flow management by use of an innovative approach to the problem of highway ramp metering control that embeds Reinforcement Learning techniques within the Model Predictive Control framework. The control problem is formulated as an RL task by crafting a suitable stage cost function that is representative of the traffic conditions, variability in the control action, and violations of a safety-critical constraint on the maximum number of vehicles in queue. An MPC-based RL approach, which merges the advantages of the two paradigms in order to overcome the shortcomings of each framework, is proposed to learn to efficiently control an on-ramp and to satisfy its constraints despite uncertainties in the system model and variable demands. Finally, simulations are performed on a benchmark from the literature consisting of a small-scale highway network. Results show that, starting from an MPC controller that has an imprecise model and is poorly tuned, the proposed methodology is able to effectively learn to improve the control policy such that congestion in the network is reduced and constraints are satisfied, yielding an improved performance compared to the initial controller.Comment: 14 pages, 10 figures, 3 tables, submitted to IEEE Transactions on Intelligent Transportation System

    A multi-agent simulation platform applied to the study of urban traffic lights

    Full text link
    Proceedings of 6th International Conference on Software and Data Technologies, ICSOFT 2011The Multi-Agent system paradigm allows the development of complex software platforms to be used in a wide range of real-world scenarios. One of the most successful areas these technologies have been applied are in the simulation and optimization of complex systems. Traffic simulation/optimization problems are a specially suitable target for such a platform. This paper proposes a new Multi-Agent simulation platform, where agents are based on a Swarm model (lightweight agents with very low autonomy or proactivity). Using this framework, simulation designers are free to configure road networks of arbitrary complexity, by customizing road width, geometry and intersection with other roads. To simulate different traffic flow scenarios, vehicle trajectories can be defined by choosing start and end locations and providing traffic generation functions for each one trajectory defined. Finally, how many vehicles are generated at each time step can be determined by a time series function. The domain of traffic simulation has been selected to investigate the effect of traffic light configuration on the flow of vehicles in a road network. The experimental results from this platform show a strong correlation between traffic light behavior and the flow of traffic through the network that affects the congestion of the road.This work has been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2010-19872 and by Jobssy.com
    corecore