23 research outputs found

    The Impact of Small Molecule Binding on the Energy Landscape of the Intrinsically Disordered Protein C-Myc

    Get PDF
    Intrinsically disordered proteins are attractive therapeutic targets owing to their prevalence in several diseases. Yet their lack of well-defined structure renders ligand discovery a challenging task. An intriguing example is provided by the oncoprotein c-Myc, a transcription factor that is over expressed in a broad range of cancers. Transcriptional activity of c-Myc is dependent on heterodimerization with partner protein Max. This protein-protein interaction is disrupted by the small molecule 10058-F4 (1), that binds to monomeric and disordered c-Myc. To rationalize the mechanism of inhibition, structural ensembles for the segment of the c-Myc domain that binds to 1 were computed in the absence and presence of the ligand using classical force fields and explicit solvent metadynamics molecular simulations. The accuracy of the computed structural ensembles was assessed by comparison of predicted and measured NMR chemical shifts. The small molecule 1 was found to perturb the composition of the apo equilibrium ensemble and to bind weakly to multiple distinct c-Myc conformations. Comparison of the apo and holo equilibrium ensembles reveals that the c-Myc conformations binding 1 are already partially formed in the apo ensemble, suggesting that 1 binds to c-Myc through an extended conformational selection mechanism. The present results have important implications for rational ligand design efforts targeting intrinsically disordered proteins

    Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide

    Get PDF
    During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide's free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies

    Metadynamics Simulations Reveal a Na+ Independent Exiting Path of Galactose for the Inward-Facing Conformation of vSGLT

    Get PDF
    Sodium-Galactose Transporter (SGLT) is a secondary active symporter which accumulates sugars into cells by using the electrochemical gradient of Na+ across the membrane. Previous computational studies provided insights into the release process of the two ligands (galactose and sodium ion) into the cytoplasm from the inward-facing conformation of Vibrio parahaemolyticus sodium/galactose transporter (vSGLT). Several aspects of the transport mechanism of this symporter remain to be clarified: (i) a detailed kinetic and thermodynamic characterization of the exit path of the two ligands is still lacking; (ii) contradictory conclusions have been drawn concerning the gating role of Y263; (iii) the role of Na+ in modulating the release path of galactose is not clear. In this work, we use bias-exchange metadynamics simulations to characterize the free energy profile of the galactose and Na+ release processes toward the intracellular side. Surprisingly, we find that the exit of Na+ and galactose is non-concerted as the cooperativity between the two ligands is associated to a transition that is not rate limiting. The dissociation barriers are of the order of 11-12 kcal/mol for both the ion and the substrate, in line with kinetic information concerning this type of transporters. On the basis of these results we propose a branched six-state alternating access mechanism, which may be shared also by other members of the LeuT-fold transporters

    Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations

    Get PDF
    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a \u2018tube model\u2019 approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the \u2018CamTube\u2019 force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 \u3bcs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost

    Structure and dynamics of the integrin LFA-1 I-domain in the inactive state underlie its inside-out/outside-in signaling and allosteric mechanisms.

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1) is an integrin that transmits information in two directions across the plasma membrane of leukocytes, in so-called outside-in and inside-out signaling mechanisms. To investigate the structural basis of these mechanisms, we studied the conformational space of the apo I-domain using replica-averaged metadynamics simulations in combination with nuclear magnetic resonance chemical shifts. We thus obtained a free energy landscape that reveals the existence of three conformational substates of this domain. The three substates include conformations similar to existing crystallographic structures of the low-affinity I-domain, the inactive I-domain with an allosteric antagonist inhibitor bound underneath α helix 7, and an intermediate affinity state of the I-domain. The multiple substates were validated with residual dipolar coupling measurements. These results suggest that the presence of three substates in the apo I-domain enables the precise regulation of the binding process that is essential for the physiological function of LFA-1.This study was supported by the Wellcome Trust and the BBSRC.This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.str.2014.12.02

    The permeation mechanism of organic cations through a CNG mimic channel

    Get PDF
    Several channels, ranging from TRP receptors to Gap junctions, allow the exchange of small organic solute across cell membrane. However, very little is known about the molecular mechanism of their permeation. Cyclic Nucleotide Gated (CNG) channels, despite their homology with K+channels and in contrast with them, allow the passage of larger methylated and ethylated ammonium ions like dimethylammonium (DMA) and ethylammonium (EA). We combined electrophysiology and molecular dynamics simulations to examine how DMA interacts with the pore and permeates through it. Due to the presence of hydrophobic groups, DMA enters easily in the channel and, unlike the alkali cations, does not need to cross any barrier. We also show that while the crystal structure is consistent with the presence of a single DMA ion at full occupancy, the channel is able to conduct a sizable current of DMA ions only when two ions are present inside the channel. Moreover, the second DMA ion dramatically changes the free energy landscape, destabilizing the crystallographic binding site and lowering by almost 25 kJ/mol the binding affinity between DMA and the channel. Based on the results of the simulation the experimental electron density maps can be re-interpreted with the presence of a second ion at lower occupancy. In this mechanism the flexibility of the channel plays a key role, extending the classical multi-ion permeation paradigm in which conductance is enhanced by the plain interaction between the ions

    The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions.

    Get PDF
    When present, structural disorder makes it very challenging to characterise the conformational properties of proteins. This is particularly the case of proteins, such as the oncogene protein E7 of human papillomavirus type 16, which contain both ordered and disordered domains, and that can populate monomeric and oligomeric states under physiological conditions. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a powerful method to study these complex systems, most notably in combination with molecular dynamics simulations. Here we use NMR chemical shifts and residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations to determine the free energy landscape of E7. This landscape reveals a complex interplay between a folded but highly dynamical C-terminal domain and a disordered N-terminal domain that forms transient secondary and tertiary structures, as well as an equilibrium between a high-populated (98%) dimeric state and a low-populated (2%) monomeric state. These results provide compelling evidence of the complex conformational heterogeneity associated with the behaviour and interactions of this disordered protein associated with disease.University of Florence (Italy) “Science without borders” of the Brazilian Ministry of Science and Technology (CNPq

    The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments

    Get PDF
    The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the A\u3b240 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer's disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements

    The role of solvent in the self-assembly of m-aminobenzoic acid: a density functional theory and molecular dynamics study

    Get PDF
    D. D. T. thanks the UK's Royal Society for the award of a Royal Society Industry Fellowship. This research utilised Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202

    Atomistic Study of Structural and Functional Properties of Membrane Proteins

    Get PDF
    Living cells exploit membrane proteins to carry out crucial functions like transport of nutrients, signal transduction, energy conversion, etc. Recently, the remarkable and continuous improvement of computational algorithms and power allowed simulating and investigating relevant aspects of the mechanisms of this important class of proteins. In this thesis we focused on the study of two membrane proteins: a transporter and an ion channel. Firstly, we investigated the bacterial homologue of Sodium Galactose Transporter (SGLT), which plays an important role in the accumulation of sugars (i.e. glucose or galactose) inside cells, assuring a correct intestinal absorption and renal re-absorption. Using enhanced sampling techniques, we focused in understanding selected aspects of its transport mechanism. First, we identified a stable Na+ ion binding site, which was not solved crystallographically. Second, based on the results of the first study, we investigated the mechanism of the binding/release of both ligands to/from the protein in the inward-facing conformation and their interplay during this process. Finally, we also worked on another membrane protein: the Cyclic Nucleotide-Gated (CNG) channel. Using a chimera, the NaK2CNG mimic, we investigated the structural basis of the linkage among gating and permeation and of the voltage dependence shown by this channel. Large-scale molecular dynamics (MD) simulations, together with electrophysiology and X-ray crystallography, have been used to study the permeation mechanism of this mimic as a model system of CNG in presence of different alkalications
    corecore