152 research outputs found

    Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models

    Get PDF
    A major source of error for repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is the phase delay in radio signal propagation through the atmosphere (especially the part due to tropospheric water vapour). Based on experience with the Global Positioning System (GPS)/Moderate Resolution Imaging Spectroradiometer (MODIS) integrated model and the Medium Resolution Imaging Spectrometer (MERIS) correction model, two new advanced InSAR water vapour correction models are demonstrated using both MERIS and MODIS data: (1) the MERIS/MODIS combination correction model (MMCC); and (2) the MERIS/MODIS stacked correction model (MMSC). The applications of both the MMCC and MMSC models to ENVISAT Advanced Synthetic Aperture Radar (ASAR) data over the Southern California Integrated GPS Network (SCIGN) region showed a significant reduction in water vapour effects on ASAR interferograms, with the root mean square (RMS) differences between GPS- and InSAR-derived range changes in the line-of-sight (LOS) direction decreasing from ,10mm before correction to ,5mm after correction, which is similar to the GPS/MODIS integrated and MERIS correction models. It is expected that these two advanced water vapour correction models can expand the application of MERIS and MODIS data for InSAR atmospheric correction. A simple but effective approach has been developed to destripe Terra MODIS images contaminated by radiometric calibration errors. Another two limiting factors on the MMCC and MMSC models have also been investigated in this paper: (1) the impact of the time difference between MODIS and SAR data; and (2) the frequency of cloud-free conditions at the global scale

    Monitoring Land Surface Deformation with Satellite ScanSAR Images: Case Studies on Large Earthquakes in China

    Get PDF
    This chapter presents a new application of scanning interferometric synthetic aperture radar (ScanSAR) interferometry in monitoring land surface deformation caused by large earthquakes. To make better use of the ScanSAR data and obtain a wider deformation observation, this research studied and analyzed certain key elements of ScanSAR interferometry, including coherence, co-registering, methods of removing orbit errors, correction of atmosphere effects, and geoid undulation. The wide swath mode (WSM) is also known as the ScanSAR mode by which synthetic aperture time is shared by adjacent sub-swaths and azimuth resolution that is traded off for a wider coverage. So, it is possible to monitor a larger area of earthquake deformation. In this study, we obtained ScanSAR and Image Mode (IM) data and analyzed coherence, co-registering, methods of removing orbit errors, correction of atmosphere effects, and geoid undulation to monitor land surface deformation caused by large earthquakes in the 405 × 405 km field of the Wenchuan earthquake and Yutian earthquake, respectively, in China. The results obtained agree well with that of the investigations of the crustal motion in the study areas

    Integration of InSAR time series analysis and water vapour correction for mapping postseismic deformation after the 2003 Bam (Iran) Earthquake

    Get PDF
    Atmospheric water-vapor effects represent a major limitation of interferometric synthetic aperture radar (InSAR) techniques, including InSAR time-series (TS) approaches (e.g., persistent or permanent scatterers and small-baseline subset). For the first time, this paper demonstrates the use of InSAR TS with precipitable water-vapor (InSAR TS + PWV) correction model for deformation mapping. We use MEdium Resolution Imaging Spectrometer (MERIS) near-infrafred (NIR) water-vapor data for InSAR atmospheric correction when they are available. For the dates when the NIR data are blocked by clouds, an atmospheric phase screen (APS) model has been developed to estimate atmospheric effects using partially water-vapor-corrected interferograms. Cross validation reveals that the estimated APS agreed with MERIS-derived line-of-sight path delays with a small standard deviation (0.3–0.5 cm) and a high correlation coefficient (0.84–0.98). This paper shows that a better TS of postseismic motion after the 2003 Bam (Iran) earthquake is achievable after reduction of water-vapor effects using the InSAR TS + PWV technique with coincident MERIS NIR water-vapor data

    Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    Get PDF
    Author name used in this publication: X. L. Ding2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Towards a rigorous fusion of GNSS and InSAR observations for the purpose of water vapor retrieval

    Get PDF
    In the framework of the rigorous fusion of GNSS and InSAR observations, the presented work carries out at a straightforward comparison of the wet delay, caused by water vapor, derived from GNSS and InSAR. The contributions of the two sensors to the wet delay are compared in the line of sight towards the SAR satellite. Comparisons of GNSS observations with the satellite-directed InSAR data show that only a partial component of the wet delay remains after the interferogram formation

    On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry : a new application for the Sentinel-1 mission

    Get PDF
    In this work we present a methodology for the mapping of Snow Water Equivalent (SWE) temporal variations based on the Synthetic Aperture Radar (SAR) Interferometry technique and Sentinel-1 data. The shift in the interferometric phase caused by the refraction of the microwave signal penetrating the snow layer is isolated and exploited to generate maps of temporal variation of SWE from coherent SAR interferograms. The main advantage of the proposed methodology with respect to those based on the inversion of microwave SAR backscattering models is its simplicity and the reduced number of required in-situ SWE measurements. The maps, updated up to every 6 days, can attain a spatial resolution up to 20 m with sub-centimetre ASWE measurement accuracy in any weather and sun illumination condition. We present results obtained using the proposed methodology over a study area in Finland. These results are compared with in-situ measurements of ASWE, showing a reasonable match with a mean accuracy of about 6 mm.Peer reviewe
    corecore