204 research outputs found

    Morphological Computing in Cognitive Systems, Connecting Data to Intelligent Agency

    Get PDF
    According to the currently dominant view, cognitive science is a study of mind and intelligence focused on computational models of knowledge in humans. It is described in terms of symbol manipulation over formal language. This approach is connected with a variety of unsolvable problems, as pointed out by Thagard. In this paper, I argue that the main reason for the inadequacy of the traditional view of cognition is that it detaches the body of a human as the cognizing agent from the higher-level abstract knowledge generation. It neglects the dynamical aspects of cognitive processes, emotions, consciousness, and social aspects of cognition. It is also uninterested in other cognizing agents such as other living beings or intelligent machines. Contrary to the traditional computationalism in cognitive science, the morphological computation approach offers a framework that connects low-level with high-level approaches to cognition, capable of meeting challenges listed by Thagard. To establish this connection, morphological computation generalizes the idea of computation from symbol manipulation to natural/physical computation and the idea of cognition from the exclusively human capacity to the capacity of all goal-directed adaptive self-reflective systems, living organisms as well as robots. Cognition is modeled as a layered process, where at the lowest level, systems acquire data from the environment, which in combination with the already stored data in the morphology of an agent, presents the basis for further structuring and self-organization of data into information and knowledge

    Morphological Computation as Natural Ecosystem Service for Intelligent Technology

    Get PDF
    The basic idea of natural computing is learning from nature. The naturalist framework provides an info-computational architecture for cognizing agents, modeling living organisms as informational structures with computational dynamics. Intrinsic natural information processes can be used asnatural ecosystem services to perform resource-efficient computation, instead of explicitly controlling every step of the computational process. In robotics, morphological computing is using inherent material properties to produce behavior like passive walking or grasping. In general, morphology (structure, shape, form, material) is self-organizing into dynamic structures resulting in growth, development, and decision-making that represent processes of embodied cognition and constitute the naturalized basis of intelligent behavior

    Morphological, Natural, Analog and Other Unconventional Forms of Computing for Cognition and Intelligence

    Get PDF
    According to the currently dominant view, cognitive science is a study of mind and intelligence focused on computational models of knowledge in humans. It is described in terms of symbol manipulation over formal language. This approach is connected with a variety of unsolvable problems, as pointed out by Thagard. In this paper, I argue that the main reason for the inadequacy of the traditional view of cognition is that it detaches the body of a human as the cognizing agent from the higher-level abstract knowledge generation. It neglects the dynamical aspects of cognitive processes, emotions, consciousness, and social aspects of cognition. It is also uninterested in other cognizing agents such as other living beings or intelligent machines. Contrary to the traditional computationalism in cognitive science, the morphological computation approach offers a framework that connects low-level with high-level approaches to cognition, capable of meeting challenges listed by Thagard. To establish this connection, morphological computation generalizes the idea of computation from symbol manipulation to natural/physical computation and the idea of cognition from the exclusively human capacity to the capacity of all goal-directed adaptive self-reflective systems, living organisms as well as robots. Cognition is modeled as a layered process, where at the lowest level, systems acquire data from the environment, which in combination with the already stored data in the morphology of an agent, presents the basis for further structuring and self-organization of data into information and knowledge

    Prolegomena to an operator theory of computation

    Get PDF
    Defining computation as information processing (information dynamics) with information as a relational property of data structures (the difference in one system that makes a difference in another system) makes it very suitable to use operator formulation, with similarities to category theory. The concept of the operator is exceedingly important in many knowledge areas as a tool of theoretical studies and practical applications. Here we introduce the operator theory of computing, opening new opportunities for the exploration of computing devices, processes, and their networks

    Natural Computational Architectures for Cognitive Info-Communication

    Get PDF
    Recent comprehensive overview of 40 years of research in cognitive architectures, (Kotseruba and Tsotsos 2020), evaluates modelling of the core cognitive abilities in humans, but only marginally addresses biologically plausible approaches based on natural computation. This mini review presentsa set of perspectives and approaches which have shaped the development of biologically inspired computational models in the recent past that can lead to the development of biologically more realistic cognitive architectures. For describing continuum of natural cognitive architectures, from basal cellular to human-level cognition, we use evolutionary info-computational framework, where natural/ physical/ morphological computation leads to evolution of increasingly complex cognitive systems. Forty years ago, when the first cognitive architectures have been proposed, understanding of cognition, embodiment and evolution was different. So was the state of the art of information physics, bioinformatics, information chemistry, computational neuroscience, complexity theory, selforganization, theory of evolution, information and computation. Novel developments support a constructive interdisciplinary framework for cognitive architectures in the context of computing nature, where interactions between constituents at different levels of organization lead to complexification of agency and increased cognitive capacities. We identify several important research questions for further investigation that can increase understanding of cognition in nature and inspire new developments of cognitive technologies. Recently, basal cell cognition attracted a lot of interest for its possible applications in medicine, new computing technologies, as well as micro- and nanorobotics. Bio-cognition of cells connected into tissues/organs, and organisms with the group (social) levels of information processing provides insights into cognition mechanisms that can support the development of new AI platforms and cognitive robotics

    Modelling Computing Devices and Processes by Information Operators

    Get PDF
    The concept of operator is exceedingly important in many areas as a tool of theoretical studies and practical applications. Here, we introduce the operator theory of computing, opening new opportunities for the exploration of computing devices, networks, and processes. In particular, the operator approach allows for the solving of many computing problems in a more general context of operating spaces. In addition, operator representation of computing devices and their networks allows for the construction of a variety of operator compositions and the development of new schemas of computation as well as network and computer architectures using operations with operators. Besides, operator representation allows for the efficient application of the axiomatic technique for the investigation of computation

    Neurolaw: Brain-Computer Interfaces

    Get PDF

    Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science

    Get PDF
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses
    corecore