104 research outputs found

    Assessing the performance of Digital Micromirror Devices for use in space-based multi-object spectrometers

    Get PDF
    A current need in space-based instrumentation is a reconfigurable slit mask. Several techniques for slit masks have been employed for ground-based astronomical spectrographs. These ground-based instruments have used large discrete components, which are impractical for remote operation in space-based deployment. The Texas Instruments\u27 Digital Micromirror Device (DMD) was originally conceived purely for display purposes, but is a viable candidate to be use as a slit mask in a space-based multi-object spectrograph (MOS). The Integrated Circuit (IC) manufacturing industry has enabled the robust integration of both silicon transistors and Micro-Electrical Mechanical Systems (MEMS) optical components into a very reliable monolithic chip (the DMD). The focus of this work was in three areas that addressed the suitability of proposing DMDs for future space missions. The DMDs were optically characterized to assess their utility in a spectrograph. The DMDs were also cooled in a liquid nitrogen dewar to determine their minimum operating temperature. The low temperature tests indicated that the DMD can operate to temperatures as low as 130 K. In addition, several DMDs were irradiated with high-energy protons at the LBNL 88 Cyclotron to determine how robust the devices are to ionizing radiation (protons). The radiation testing results indicate that DMDs would survive medium to long duration space missions with full operability. Based on preliminary tests in these three areas, the DMD should be considered as an excellent candidate for deployment in future space missions

    Nonlinear characterisation of reconfigurable antennas

    Get PDF
    The lack of references on nonlinearity issue faced in reconfigurable antennas has motivated the work described in this thesis. The nonlinear behaviour is caused by active switches introduced on the radiating structure of the reconfigurable antennas. Depending on the type of active switches deployed on the antenna, the nonlinearity could be severe, which could have serious implications for antenna operation. Thus, the issue of nonlinearity in reconfigurable antennas should not be ignored and nonlinearity measurements should be performed to ensure the nonlinear performance is within an acceptable level. A set of nonlinearity measurements has been identified and performed on the proposed reconfigurable PIFAs. Prototypes are presented with PIN diode and E-PHEMT switches. For the purpose of comparison, measurements were also made with the active switch replaced with a copper bridge for linear interconnection. The nonlinearity performance can be evaluated from the measurement values of third-order intermodulation distortion (IMD3) products, ratio of IMD3 products to carrier, IMD3 products asymmetry, third-order input intercept point (IIP3) and 1-dB gain compression point (P1_1βˆ’_-d_dB_B). The measurements are performed when the antenna is transmitting signals. All measurements are performed on the state-of-the-art, 4-port ZVA67 Rohde & Schwarz VNA. Based on the nonlinearity measurements, it can be concluded that the presence of active switches has compromised the nonlinearity of the reconfigurable antennas. This is evident from the appearance of strong IMD3 products at the frequency of interest. In addition, the power-series-based approximation of 10 dB difference between the measured P1_1βˆ’_-d_dB_B and IIP3 is shown to be reasonable. Moreover, this work has demonstrated that the ratio of the IMD3 products to carrier does not vary significantly with radiation angles

    NASA Tech Briefs, April 2011

    Get PDF
    Topics covered include: Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication; Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications; Target Assembly to Check Boresight Alignment of Active Sensors; Virtual Sensor Test Instrumentation; Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas; Miniaturized Ka-Band Dual-Channel Radar; Continuous-Integration Laser Energy Lidar Monitor; Miniaturized Airborne Imaging Central Server System; Radiation-Tolerant, SpaceWire-Compatible Switching Fabric; Small Microprocessor for ASIC or FPGA Implementation; Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters; High-Voltage-Input Level Translator Using Standard CMOS; Monitoring Digital Closed-Loop Feedback Systems; MASCOT - MATLAB Stability and Control Toolbox; MIRO Continuum Calibration for Asteroid Mode; GOATS Image Projection Component; Coded Modulation in C and MATLAB; Low-Dead-Volume Inlet for Vacuum Chamber; Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler; Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces; Infrared-Bolometer Arrays with Reflective Backshorts; Commercialization of LARC (trade mark) -SI Polyimide Technology; Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s; Carbon Nanotubes on Titanium Substrates for Stray Light Suppression; Monolithic, High-Speed Fiber-Optic Switching Array for Lidar; Grid-Tied Photovoltaic Power System; Spectroelectrochemical Instrument Measures TOC; A Miniaturized Video System for Monitoring Drosophila Behavior; Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids; Creep Measurement Video Extensometer; Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker n-B-pi-p Superlattice Infrared Detector; Safe Onboard Guidance and Control Under Probabilistic Uncertainty; General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets; Hidden Statistics of Schroedinger Equation; Optimal Padding for the Two-Dimensional Fast Fourier Transform; Spatial Query for Planetary Data; Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna; Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems; Sampling Theorem in Terms of the Bandwidth and Sampling Interval; Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure; Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror; Wireless Orbiter Hang-Angle Inclinometer System; and Internal Electrostatic Discharge Monitor - IESDM
    • …
    corecore