24 research outputs found

    Design and modeling of a space docking mechanism for cooperative on-orbit servicing

    Get PDF
    This dissertation addresses the design procedure of a docking mechanism for space applications, in particular, on-orbit servicing of cooperative satellites. The mechanism was conceived to comply with the technical specifications of the STRONG mission. The objective of this mission is to deploy satellite platforms using a space tug with electric propulsion. This mission is part of the SAPERE project, which focuses on space exploration and access to space. A docking mechanism is used for recovering the misalignments left by the guidance, navigation, and control system of the servicer satellite when approaching the customer spacecraft. However, most importantly, the mechanism must safely dissipate the energy associated with the relative velocities between the spacecraft upon contact. Five concepts were considered as possible candidates for the docking mechanism: a system based on the Stewart-Gough platform with a position controller, a Stewart-Gough platform with impedance control, a central passive mechanism (probe-drogue), a central active mechanism, and a mechanism equipped with articulated arms. Several trade-off criteria were defined and applied to the concepts. The result of this trade study was the selection of the central passive mechanism as the most balanced solution. This mechanism is composed of a probe and a conical frustum equipped with a socket to capture the probe. It was further developed and tested using mathematical models of the docking maneuver. The results of the simulations showed that the passiveness of the system prevented the docking maneuver from being fully accomplished. Consequently, a second design iteration was performed. In this new iteration, the degrees of freedom of the mechanism were increased by adding two controlled linear axes in series with the degrees of freedom of the preliminary design. The electromechanical actuators and transmissions of this mechanism were selected following the guidelines of The ECSS standards. Also, in this case, numerical models were used to assess the functioning of the docking system. The results produced by these models demonstrated the suitability of the mechanism for completing the docking operation defined by the mission’s specifications. Furthermore, the results also showed the architecture and functioning of the mechanism to be possibly suitable for other cooperative docking operations between small and mid-sized satellites. In addition, the definition of the mechanical details as well as the control architecture led to the complete design of an engineering prototype for laboratory tests. In this regard, the laboratory tests were defined with the scope of verifying the different operating modes of the docking mechanism. The test rig was designed to be equipped with a serial manipulator connected to the female part of the mechanism through a force and torque module. The objective will be to simulate the relative motion between the docking halves using different techniques to generate the trajectory of the manipulator

    Power-over-Tether Unmanned Aerial System Leveraged for Trajectory Influenced Atmospheric Sensing

    Get PDF
    The use of unmanned aerial systems (UASs) in agriculture has risen in the past decade and is helping to modernize agriculture. UASs collect and elucidate data previously difficult to obtain and are used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this thesis, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS configured for long-term, high throughput atmospheric monitoring with an array of sensors embedded along the tether. This was accomplished by leveraging the physical presence of the tether to integrate an array of sensors. With power from the ground station, the TAUS can acquire continuous volumetric data for numerous hours. The system is used to sense atmospheric conditions and temperature gradients across altitudes. We present the development of the prototype system, along with a discussion of the results from field experiments. We discuss the influence that power losses across the tether have on the sensors’ abilities to accurately sense atmospheric temperature. We demonstrate a 6-hour continuous flight at an altitude of 50 feet, and a 1-hour flight at sunset to acquire the gradually decreasing atmospheric temperature from an array of 6 sensors. We then modeled the TAUS and sensor array to computer simulate four trajectories (mower, spiral, star, and flower) for the TAUS and evaluated the system and sensing performance via well-defined factors. We conducted outdoor experiments to characterize system performance while in operation and to inform the development of models and trajectory simulations. From the analysis of the experimental data, we found minimal sensing error with respect to ground truth installations at comparable altitudes. Leveraging the simulated trajectory outcomes we reconstructed the changing input temperature fields. The analysis of the simulated data indicated that the power-tethered Star trajectory performed well with respect to key performance factors when measuring changing atmospheric fields. The TAUS will be improved by incorporating multi-variable sensors and an optimal control algorithm for elevated levels of operational autonomy. Adviser(s): Carrick Detweiler and Francisco Mu˜noz-Arriol

    Engineering Dynamics and Life Sciences

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    A constraint-based approach for assessing the capabilities of existing designs to handle product variation

    Get PDF
    All production machinery is designed with an inherent capability to handle slight variations in product. This is initially achieved by simply providing adjustments to allow, for example, changes that occur in pack sizes to be accommodated, through user settings or complete sets of change parts. By the appropriate use of these abilities most variations in product can be handled. However when extreme conditions of setups, major changes in product size and configuration, are considered there is no guarantee that the existing machines are able to cope. The problem is even more difficult to deal with when completely new product families are proposed to be made on an existing product line. Such changes in product range are becoming more common as producers respond to demands for ever increasing customization and product differentiation. An issue exists due to the lack of knowledge on the capabilities of the machines being employed. This often forces the producer to undertake a series of practical product trials. These however can only be undertaken once the product form has been decided and produced in sufficient numbers. There is then little opportunity to make changes that could greatly improve the potential output of the line and reduce waste. There is thus a need for a supportive modelling approach that allows the effect of variation in products to be analyzed together with an understanding of the manufacturing machine capability. Only through their analysis and interaction can the capabilities be fully understood and refined to make production possible. This thesis presents a constraint-based approach that offers a solution to the problems above. While employing this approach it has been shown that, a generic process can be formed to identify the limiting factors (constraints) of variant products to be processed. These identified constraints can be mapped to form the potential limits of performance for the machine. The limits of performance of a system (performance envelopes) can be employed to assess the design capability to cope with product variation. The approach is successfully demonstrated on three industrial case studies.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore