20 research outputs found

    Application development process for GNAT, a SOC networked system

    Get PDF
    The market for smart devices was identified years ago, and yet commercial progress into this field has not made significant progress. The reason such devices are so painfully slow to market is that the gap between the technologically possible and the market capitalizable is too vast. In order for inventions to succeed commercially, they must bridge the gap to tomorrow\u27s technology with marketability today. This thesis demonstrates a design methodology that enables such commercial success for one variety of smart device, the Ambient Intelligence Node (AIN). Commercial Off-The Shelf (COTS) design tools allowing a Model-Driven Architecture (MDA) approach are combined via custom middleware to form an end-to-end design flow for rapid prototyping and commercialization. A walkthrough of this design methodology demonstrates its effectiveness in the creation of Global Network Academic Test (GNAT), a sample AIN. It is shown how designers are given the flexibility to incorporate IP Blocks available in the Global Economy to reduce Time-To-Market and cost. Finally, new kinds of products and solutions built on the higher levels of design abstraction permitted by MDA design methods are explored

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Energy-aware medium access control protocols for wireless sensors network applications

    Get PDF
    The main purpose of this thesis was to investigate energy efficient Medium Access Control (MAC) protocols designed to extend the lifetime of a wireless sensor network application, such as tracking, environment monitoring, home security, patient monitoring, e.g., foetal monitoring in the last weeks of pregnancy. From the perspective of communication protocols, energy efficiency is one of the most important issues, and can be addressed at each layer of the protocol stack; however, our research only focuses on the medium access control (MAC) layer. An energy efficient MAC protocol was designed based on modifications and optimisations for a synchronized power saving Sensor MAC (SMAC) protocol, which has three important components: periodic listen and sleep, collision and overhearing avoidance and message passing. The Sensor Block Acknowledgement (SBACK) MAC protocol is proposed, which combines contention-based, scheduling-based and block acknowledgement-based schemes to achieve energy efficiency. In SBACK, the use of ACK control packets is reduced since it will not have an ACK packet for every DATA packet sent; instead, one special packet called Block ACK Response will be used at the end of the transmission of all data packets. This packet informs the sender of how many packets were received by the receiver, reducing the number of ACK control packets we intended to reduce the power consumption for the nodes. Hence more useful data packets can be transmitted. A comparison study between SBACK and SMAC protocol is also performed. Considering 0% of packet losses, SBACK decreases the energy consumption when directly compared with S-MAC, we will have always a decrease of energy consumption. Three different transceivers will be used and considering a packet loss of 10% we will have a decrease of energy consumption between 10% and 0.1% depending on the transceiver. When there are no retransmissions of packets, SBACK only achieve worst performance when the number of fragments is less than 12, after that the decrease of average delay increases with the increase of the fragments sent. When 10% of the packets need retransmission only for the TR1000 transceiver worst results occurs in terms of energy waste, all other transceivers (CC2420 and AT86RF230) achieve better results. In terms of delay if we need to retransmit more than 10 packets the SBACK protocol always achieves better performance when comparing with the other MAC protocols that uses ACK

    Monitoring and Information Alignment in Pursuit of an IoT-Enabled Self-Sustainable Interoperability

    Get PDF
    To remain competitive with big corporations, small and medium-sized enterprises (SMEs) often need to be more dynamic, adapt to new business situations, react faster, and thereby survive in today鈥榮 global economy. To do so, SMEs normally seek to create consortiums, thus gaining access to new and more opportunities. However, this strategy may also lead to complications. Due to the different sources of enterprise models and semantics, organizations are experiencing difficulties in seamlessly exchanging vital information via electronic means. In their attempt to address this issue, most seek to achieve interoperability by establishing peer-to-peer mappings with different business partners, or by using neutral data standards to regulate communications in optimized networks. Moreover, systems are more and more dynamic, frequently changing to answer new customer鈥榮 requirements, causing new interoperability problems and a reduction of efficiency. Another situation that is constantly changing is the devices used in the enterprises, as the Enterprise Information Systems, devices are used to register internal data, and to be used to monitor several aspects. These devices are constantly changing, following the evolution and growth of the market. So, it is important to monitor these devices and doing a model representation of them. This dissertation proposes a self-sustainable interoperable framework to monitor existing enterprise information systems and their devices, monitor the device/enterprise network for changes and automatically detecting model changes. With this, network harmonization disruptions are detected in a timely way, and possible solutions are suggested to regain the interoperable status, thus enhancing robustness for reaching sustainability of business networks along time

    Re-use of tests and arguments for assesing dependable mixed-critically systems

    Get PDF
    The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to system heterogeneity, design constraints and increasing complexity. The foundation for MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple execution platforms and communication interfaces to implement concurrent functions with different safety requirements. Besides a computing platform providing adequate isolation and fault tolerance mechanism, the development of an MCS application shall also comply with the guidelines defined by the safety standards. A way to lower the overall MCS certification cost is to adopt a platform-based design (PBD) development approach. PBD is a model-based development (MBD) approach, where separate models of logic, hardware and deployment support the analysis of the resulting system properties and behaviour. The PBD development of MCSs benefits from a composition of modular safety properties (e.g. modular safety cases), which support the derivation of mixed-criticality product lines. The validation and verification (V&V) activities claim a substantial effort during the development of programmable electronics for safety-critical applications. As for the MCS dependability assessment, the purpose of the V&V is to provide evidences supporting the safety claims. The model-based development of MCSs adds more V&V tasks, because additional analysis (e.g., simulations) need to be carried out during the design phase. During the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the V&V campaigns, where test automation and fault-injection are the key to test repeatability and thorough exercise of the safety mechanisms. This dissertation proposes several V&V artefacts re-use strategies to perform an early verification at system level for a distributed MCS, artefacts that later would be reused up to the final stages in the development process: a test code re-use to verify the fault-tolerance mechanisms on a functional model of the system combined with a non-intrusive software fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an argumentation framework to support the automated composition and staged completion of modular safety-cases for dependability assessment, in the context of the platform-based development of mixed-criticality systems relying on the DREAMS harmonized platform.La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta con la heterogeneidad del sistema, las restricciones de dise帽o y una complejidad creciente. Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido compacto comprende m煤ltiples plataformas de ejecuci贸n e interfaces de comunicaci贸n para implementar funciones concurrentes y con diferentes requisitos de seguridad. Adem谩s de una plataforma de computaci贸n que provea un aislamiento y mecanismos de tolerancia a fallos adecuados, el desarrollo de una aplicaci贸n SCM adem谩s debe cumplir con las directrices definidas por las normas de seguridad. Una forma de reducir el coste global de la certificaci贸n de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de l贸gica, hardware y despliegue soportan el an谩lisis de las propiedades y el comportamiento emergente del sistema dise帽ado. El desarrollo DBP de SCMs se beneficia de una composici贸n modular de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la definici贸n de l铆neas de productos de criticidad mixta. Las actividades de verificaci贸n y validaci贸n (V&V) representan un esfuerzo sustancial durante el desarrollo de aplicaciones basadas en electr贸nica confiable. En la evaluaci贸n de la seguridad de un SCM el prop贸sito de las actividades de V&V es obtener las evidencias que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM incrementa las tareas de V&V, porque permite realizar an谩lisis adicionales (por ejemplo, simulaciones) durante la fase de dise帽o. En las campa帽as de pruebas de integraci贸n de un SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde la automatizaci贸n de pruebas y la inyecci贸n de faltas son la clave para la repetitividad de las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos. Esta tesis propone diversas estrategias de reutilizaci贸n de artefactos de V&V para la verificaci贸n temprana de un MCS distribuido, artefactos que se emplear谩n en ulteriores fases del desarrollo: la reutilizaci贸n de c贸digo de prueba para verificar los mecanismos de tolerancia a fallos sobre un modelo funcional del sistema combinado con una inyecci贸n de fallos de software no intrusiva, la reutilizaci贸n de modelo a X-in-the-loop (XiL) y c贸digo a XiL para obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente, un marco de argumentaci贸n para la composici贸n automatizada y la compleci贸n escalonada de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika, hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan. Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren. Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen dute. Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu, kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XiL)-ra eta kodetik XiL-rako konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta gradualki sortzeko

    Innovative energy-efficient wireless sensor network applications and MAC sub-layer protocols employing RTS-CTS with packet concatenation

    Get PDF
    of energy-efficiency as well as the number of available applications. As a consequence there are challenges that need to be tackled for the future generation of WSNs. The research work from this Ph.D. thesis has involved the actual development of innovative WSN applications contributing to different research projects. In the Smart-Clothing project contributions have been given in the development of a Wireless Body Area Network (WBAN) to monitor the foetal movements of a pregnant woman in the last four weeks of pregnancy. The creation of an automatic wireless measurement system for remotely monitoring concrete structures was an contribution for the INSYSM project. This was accomplished by using an IEEE 802.15.4 network enabling for remotely monitoring the temperature and humidity within civil engineering structures. In the framework of the PROENEGY-WSN project contributions have been given in the identification the spectrum opportunities for Radio Frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The design of the circuits to harvest RF energy and the requirements needed for creating a WBAN with electromagnetic energy harvesting and Cognitive Radio (CR) capabilities have also been addressed. A performance evaluation of the state-of-the art of the hardware WSN platforms has also been addressed. This is explained by the fact that, even by using optimized Medium Access Control (MAC) protocols, if the WSNs platforms do not allow for minimizing the energy consumption in the idle and sleeping states, energy efficiency and long network lifetime will not be achieved. The research also involved the development of new innovative mechanisms that tries and solves overhead, one of the fundamental reasons for the IEEE 802.15.4 standard MAC inefficiency. In particular, this Ph.D. thesis proposes an IEEE 802.15.4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation. The results have shown that the use of the RTS/CTS mechanism improves channel efficiency by decreasing the deferral time before transmitting a data packet. In addition, the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol has been proposed that allows the aggregation of several acknowledgment responses in one special Block Acknowledgment (BACK) Response packet. Two different solutions are considered. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under both ideal conditions (a channel environment with no transmission errors) and non ideal conditions (a channel environment with transmission errors). An analytical model is proposed, capable of taking into account the retransmission delays and the maximum number of backoff stages. The simulation results successfully validate our analytical model. For more than 7 TX (aggregated packets) all the MAC sub-layer protocols employing RTS/CTS with packet concatenation allows for the optimization of channel use in WSNs, v8-48 % improvement in the maximum average throughput and minimum average delay, and decrease energy consumption

    Languages of games and play: A systematic mapping study

    Get PDF
    Digital games are a powerful means for creating enticing, beautiful, educational, and often highly addictive interactive experiences that impact the lives of billions of players worldwide. We explore what informs the design and construction of good games to learn how to speed-up game development. In particular, we study to what extent languages, notations, patterns, and tools, can offer experts theoretical foundations, systematic techniques, and practical solutions they need to raise their productivity and improve the quality of games and play. Despite the growing number of publications on this topic there is currently no overview describing the state-of-the-art that relates research areas, goals, and applications. As a result, efforts and successes are often one-off, lessons learned go overlooked, language reuse remains minimal, and opportunities for collaboration and synergy are lost. We present a systematic map that identifies relevant publications and gives an overview of research areas and publication venues. In addition, we categorize research perspectives along common objectives, techniques, and approaches, illustrated by summaries of selected languages. Finally, we distill challenges and opportunities for future research and development
    corecore