4,859 research outputs found

    MCT1 in Invasive Ductal Carcinoma: Monocarboxylate Metabolism and Aggressive Breast Cancer.

    Get PDF
    Introduction: Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes. Methods: MCT1 expression was evaluated by immunohistochemistry on tissue micro-arrays (TMA) obtained through our tumor bank. Two hundred and fifty-seven cases were analyzed: 180 cases were estrogen receptor and/or progesterone receptor positive (ER+ and/or PR+), 62 cases were human epidermal growth factor receptor 2 positive (HER2+), and 56 cases were triple negative breast cancers (TNBC). MCT1 expression was quantified by digital pathology with Aperio software. The intensity of the staining was measured on a continuous scale (0-black to 255-bright white) using a co-localization algorithm. Statistical analysis was performed using a linear mixed model. Results: High MCT1 expression was more commonly found in TNBC compared to ER+ and/or PR+ and compared to HER-2+ (p \u3c 0.001). Tumors with an in-situ component were less likely to stain strongly for MCT1 (p \u3c 0.05). High nuclear grade was associated with higher MCT1 staining (p \u3c 0.01). Higher T stage tumors were noted to have a higher expression of MCT1 (p \u3c 0.05). High MCT1 staining in cancer cells was associated with shorter progression free survival, increased risk of recurrence, and larger size independent of TNBC status (p \u3c 0.05). Conclusion: MCT1 expression, which is a marker of high catabolite uptake and mitochondrial metabolism, is associated with recurrence in breast invasive ductal carcinoma. MCT1 expression as quantified with digital image analysis may be useful as a prognostic biomarker and to design clinical trials using MCT1 inhibitors

    Astrocytes and neurons communicate via a monocarboxylic acid shuttle

    Get PDF
    Since formulation of the Astrocyte-Neuron Lactate Shuttle (ANLS) hypothesis in 1994, the hypothesis has provoked criticism and debate. Our review does not criticise, but rather integrates experimental data characterizing proton-linked monocarboxylate transporters (MCTs) into the ANLS. MCTs have wide substrate specificity and are discussed to be in protein complex with a proton donor (PD). We particularly focus on the proton-driven transfer of L-lactic acid (L-lacH) and pyruvic acid (pyrH), were PDs link MCTs to a flow of energy. The precise nature of the PD predicts the activity and catalytic direction of MCTs. By doing so, we postulate that the MCT4•phosphoglycerate kinase complex exports and at the same time in the same astrocyte, MCT1•carbonic anhydrase II complex imports monocarboxylic acids. Similarly, neuronal MCT2 preferentially imports pyrH. The repertoire of MCTs in astrocytes and neurons allows them to communicate via monocarboxylic acids. A change in imported pyrH/L-lacH ratio in favour of L-lacH encodes signals stabilizing the transit of glucose from astrocytes to neurons. The presented astrocyte neuron communication hypothesis has the potential to unite the community by suggesting that the exchange of monocarboxylic acids paves the path of glucose provision

    GLUT1 expression patterns in different Hodgkin lymphoma subtypes and progressively transformed germinal centers

    Get PDF
    Background: Increased glycolytic activity is a hallmark of cancer, allowing staging and restaging with 18F-fluorodeoxyglucose-positron-emission-tomography (PET). Since interim-PET is an important prognostic tool in Hodgkin lymphoma (HL), the aim of this study was to investigate the expression of proteins involved in the regulation of glucose metabolism in the different HL subtypes and their impact on clinical outcome. Methods: Lymph node biopsies from 54 HL cases and reactive lymphoid tissue were stained for glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA) and lactate exporter proteins MCT1 and MCT4. In a second series, samples from additional 153 HL cases with available clinical data were stained for GLUT1 and LDHA. Results: Membrane bound GLUT1 expression was frequently observed in the tumor cells of HL (49% of all cases) but showed a broad variety between the different Hodgkin lymphoma subtypes: Nodular sclerosing HL subtype displayed a membrane bound GLUT1 expression in the Hodgkin-and Reed-Sternberg cells in 56% of the cases. However, membrane bound GLUT1 expression was more rarely observed in tumor cells of lymphocyte rich classical HL subtype (30%) or nodular lymphocyte predominant HL subtype (15%). Interestingly, in both of these lymphocyte rich HL subtypes as well as in progressively transformed germinal centers, reactive B cells displayed strong expression of GLUT1. LDHA, acting downstream of glycolysis, was also expressed in 44% of all cases. We evaluated the prognostic value of different GLUT1 and LDHA expression patterns; however, no significant differences in progression free or overall survival were found between patients exhibiting different GLUT1 or LDHA expression patterns. There was no correlation between GLUT1 expression in HRS cells and PET standard uptake values. Conclusions: In a large number of cases, HRS cells in classical HL express high levels of GLUT1 and LDHA indicating glycolytic activity in the tumor cells. Although interim-PET is an important prognostic tool, a predictive value of GLUT1 or LDHA staining of the primary diagnostic biopsy could not be demonstrated. However, we observed GLUT1 expression in progressively transformed germinal centers and hyperplastic follicles, explaining false positive results in PET. Therefore, PET findings suggestive of HL relapse should always be confirmed by histology

    Novel role for the LKB1 pathway in controlling monocarboxylate fuel transporters

    Get PDF
    A question preoccupying many researchers is how signal transduction pathways control metabolic processes and energy production. A study by Jang et al. (Jang, C., G. Lee, and J. Chung. 2008. J. Cell Biol. 183:11–17) provides evidence that in Drosophila melanogaster a signaling network controlled by the LKB1 tumor suppressor regulates trafficking of an Sln/dMCT1 monocarboxylate transporter to the plasma membrane. This enables cells to import additional energy sources such as lactate and butyrate, enhancing the repertoire of fuels they can use to power vital activities

    Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors

    Get PDF
    Endogenous retroviral sequences provide a molecular fossil record of ancient infections whose analysis might illuminate mechanisms of viral extinction. A close relative of gammaretroviruses, HERV-T, circulated in primates for ~25 million years (MY) before apparent extinction within the past ~8 MY. Construction of a near-complete catalog of HERV-T fossils in primate genomes allowed us to estimate a ~32 MY old ancestral sequence and reconstruct a functional envelope protein (ancHTenv) that could support infection of a pseudotyped modern gammaretrovirus. Using ancHTenv, we identify monocarboxylate transporter-1 (MCT-1) as a receptor used by HERV-T for attachment and infection. A single HERV-T provirus in hominid genomes includes an env gene (hsaHTenv) that has been uniquely preserved. This apparently exapted HERV-T env could not support virion infection but could block ancHTenv mediated infection, by causing MCT-1 depletion from cell surfaces. Thus, hsaHTenv may have contributed to HERV-T extinction, and could also potentially regulate cellular metabolism

    MCT1-, MCT4- ja CD147-proteiinit kehittyvässä kilin pötsissä

    Get PDF
    Nuoren märehtijän alkaessa syödä kiinteää ravintoa, etumahojen suhteellinen osuus mahoista kasvaa ja niiden seinämän epiteeli alkaa kehittyä mahdollistaakseen ravintoaineiden tehokkaan imeytymisen. Märehtijöillä rehun hiilihydraatit hajoavat pötsissä haihtuviksi rasvahapoiksi, ja monokarboksylaattikuljettajien uskotaan avustavan haihtuvien rasvahappojen imeytymisessä pötsin seinämän läpi. Pötsin seinämässä on todettu olevan ainakin MCT1- ja MCT4 –isoformeja. Nämä tarvitsevat toimiakseen CD147 -proteiinin (myös OX-47, EMMPRIN, HT7 ja basigin), joka on on glykosyloitu integraalinen membraaniproteiini. Tämän tutkimuksen tarkoituksena oli selvittää MCT1-, MCT4- ja CD147 –proteiinien muutoksia pötsin toiminnan kehittymisen aikana. Toisena tavoitteena oli selvittää, voidaanko näytteenä käyttää solukalvojen sijasta pötsin seinämästä tehtyä homogenaattia. Tutkimuksessa käytettiin eri ikäisinä lopetetuista kileistä kerättyjä näytteitä. Kilejä oli yhteensä 31, joista 7 oli 3-21 tunnin ikäisiä, 7 viikon ikäisiä, 7 kahden viikon ikäisiä, 1 kolmen viikon ikäinen, 2 neljän viikon ikäistä, sekä 7 kahdeksan viikon ikäistä. Pötsin seinämästä otettiin näyte, josta valmistettiin homogenaatti ja eristettiin solukalvot eli membraanit. Pötsinäytteistä löydettiin MCT1- ja CD147 –proteiineja, mutta MCT4- isoformia ei ollut havaittavissa. Membraaninäytteissä havaittiin MCT1 -isoformin pitoisuuksien kasvavan iän mukana, paitsi kahdeksan viikon ikäisillä kileillä, joilla MCT1 –isoformin määrät vähenivät merkitsevästi. CD147 –proteiinia oli havaittavissa jo vastasyntyneiden kilien pötsinäytteissä. Membraaninäytteissä CD147 -proteiinin määrä kasvoi lineaarisesti iän mukana ja CD147-proteiinin ja MCT1 –isoformin välillä havaittiin tilastollisesti merkitsevä korrelaatio. Homogenaattinäytteissä MCT1 -isoformin määrissä ei havaittu korrelaatiota iän kanssa. MCT1- ja MCT4 -isoformien solukalvolle siirtymisessä avustavan CD147 –proteiinin ei myöskään havaittu korreloivan koe-eläinten iän tai MCT1 -isoformin kanssa. Membraani- ja homogenaattinäytteistä mitattujen MCT1- ja CD147 -määrien välillä ei ollut korrelaatiota. Haihtuvien rasvahappojen muodostus alkaa, kun eläin aloittaa kiinteän ravinnon syömisen. Tästä seuraa, että haihtuvia rasvahappoja kuljettavia proteiineja tarvitaan epiteelisolujen pinnalle. Tutkimuksessa havaittiin haihtuvia rasvahappoja kuljettavan MCT1 –proteiinin ja sen apuproteiinien määrän lisääntyminen iän myötä. N. 8-11 viikon iässä, jolloin pötsin toiminta on kehittynyt aikuisen eläimen tasolle, MCT1 –proteiinin määrä oli merkitsevästi vähäisempi kuin 4 viikon iässä. Tulosten perusteella homogenaatti ei ole hyvä tapa mitata membraaniproteiinien määrää

    Liquid Biopsy Targeting Monocarboxylate Transporter 1 on the Surface Membrane of Tumor-Derived Extracellular Vesicles from Synovial Sarcoma

    Get PDF
    Simple Summary Synovial sarcoma (SS) is associated with a high risk of recurrence and poor prognosis, and no biomarker useful in monitoring tumor burden exists. We identified monocarboxylate transporter 1 (MCT1) expressed in extracellular vesicles (EVs) derived from synovial sarcoma as a potential such marker. Circulating levels of MCT1(+)CD9(+) EVs were significantly correlated with tumor volume in a SS mouse model. Serum levels of MCT1(+)CD9(+) EVs reflected tumor burden and treatment response in SS patients. Patients with MCT1 expression on the plasma membrane have significantly worse overall survival than those with nuclear expression. Silencing of MCT1 reduced the malignant phenotype including cellular viability, migration, and invasion of SS cells. MCT1 may thus be a promising novel target for liquid biopsies and a novel therapeutic target. The lack of noninvasive biomarkers that can be used for tumor monitoring is a major problem for soft-tissue sarcomas. Here we describe a sensitive analytical technique for tumor monitoring by detecting circulating extracellular vesicles (EVs) of patients with synovial sarcoma (SS). The proteomic analysis of purified EVs from SYO-1, HS-SY-II, and YaFuSS identified 199 common proteins. DAVID GO analysis identified monocarboxylate transporter 1 (MCT1) as a surface marker of SS-derived EVs, which was also highly expressed in SS patient-derived EVs compared with healthy individuals. MCT1(+)CD9(+) EVs were also detected from SS-bearing mice and their expression levels were significantly correlated with tumor volume (p = 0.003). Furthermore, serum levels of MCT1(+)CD9(+) EVs reflected tumor burden in SS patients. Immunohistochemistry revealed that MCT1 was positive in 96.7% of SS specimens and its expression on the cytoplasm/plasma membrane was significantly associated with worse overall survival (p = 0.002). Silencing of MCT1 reduced the cellular viability, and migration and invasion capability of SS cells. This work describes a new liquid biopsy technique to sensitively monitor SS using circulating MCT1(+)CD9(+) EVs and indicates the therapeutic potential of MCT1 in SS

    Differences in intestinal size, structure, and function contributing to feed efficiency in broiler chickens reared at geographically distant locations

    Get PDF
    The contribution of the intestinal tract to differences in residual feed intake (RFI) has been inconclusively studied in chickens so far. It is also not clear if RFI-related differences in intestinal function are similar in chickens raised in different environments. The objective was to investigate differences in nutrient retention, visceral organ size, intestinal morphology, jejunal permeability and expression of genes related to barrier function, and innate immune response in chickens of diverging RFI raised at 2 locations (L1: Austria; L2: UK). The experimental protocol was similar, and the same dietary formulation was fed at the 2 locations. Individual BW and feed intake (FI) of chickens (Cobb 500FF) were recorded from d 7 of life. At 5 wk of life, chickens (L1, n = 157; L2 = 192) were ranked according to their RFI, and low, medium, and high RFI chickens were selected (n = 9/RFI group, sex, and location). RFI values were similar between locations within the same RFI group and increased by 446 and 464 g from low to high RFI in females and males, respectively. Location, but not RFI rank, affected growth, nutrient retention, size of the intestine, and jejunal disaccharidase activity. Chickens from L2 had lower total body weight gain and mucosal enzyme activity but higher nutrient retention and longer intestines than chickens at L1. Parameters determined only at L1 showed increased crypt depth in the duodenum and jejunum and enhanced paracellular permeability in low vs. high RFI females. Jejunal expression of IL1B was lower in low vs. high RFI females at L2, whereas that of TLR4 at L1 and MCT1 at both locations was higher in low vs. high RFI males. Correlation analysis between intestinal parameters and feed efficiency metrics indicated that feed conversion ratio was more correlated to intestinal size and function than was RFI. In conclusion, the rearing environment greatly affected intestinal size and function, thereby contributing to the variation in chicken RFI observed across locations
    • …
    corecore