131 research outputs found

    Inductively coupled distributed static compensator for power quality analysis of distribution networks

    Get PDF
    In this research paper, an inductively coupled distributed static compensator (IC-DSTATCOM) for three phase three wire (3P3W) electric power distribution system (EPDS) is proposed. The contraction of power quality (PQ) was marked as a perilous droop mode bump into direct coupled distributed static compensator (DC-DSTATCOM). To regain the PQ, inductive coupling transformer is assisted in conjunction with DC-DSTATCOM. The system equivalent circuit of IC-DSTATCOM is accomplished by take into account of impedance of both transformer and DC-DSTATCOM to reveal the filtering technique. The filtering icos∅ mechanism is performed by following the generalized mathematical approach using MATLAB/Simulink. A case education is reviewed in detail to illustrate the performance of both DC-DSTATCOM and IC-DSTATCOM. The IC-DSTATCOM is amplified healthier as compared to other in terms of harmonics shortening, good power factor, load balancing, and potential regulation. To examine the effectiveness, simulation outputs of the IC-DSTATCOM with different PQ parameter indices are presented by following the benchmark measure of IEEE-2030-7-2017 and IEC-61000-1 system code

    Smart PV Inverter Control for Distribution Systems

    Get PDF
    PV solar systems employ inverters to transform dc power from solar panels into ac power for injecting into the power grids. Inverters that perform multiple functions in addition to real power production are known as “smart inverters”. This thesis presents a novel control of PV inverter as a dynamic reactive power compensator – STATCOM. This “smart PV inverter” control enables a PV solar inverter to operate in three modes – i) Full PV, ii) Partial STATCOM, and iii) Full STATCOM, depending upon system needs. The novel control is developed and demonstrated for the objectives of a) symmetrical voltage regulation, b) temporary overvoltage reduction, c) power factor correction, and d) reactive power control. In Full PV mode, the inverter performs only real power production based on solar radiation. In Partial STATCOM mode, the controller uses the remaining capacity of the inverter for voltage control, power factor correction and reactive power control. The Full STATCOM mode is invoked in emergency scenarios, such as faults, or severe voltage fluctuations. In this mode, the real power production is shut down temporarily and the entire inverter capacity is utilized for voltage regulation or TOV curtailment for providing critical support to the power system. This thesis presents a comprehensive design of the proposed smart inverter controller with all its associated system components. The performance of the smart inverter is simulated using the electromagnetic transients software PSCAD/EMTDC. It is further validated through Real Time Digital Simulation and Control Hardware in the Loop (CHIL) simulation. Finally the successful performance of the smart inverter controller is demonstrated on a 10 kW inverter in the laboratory on a simulated feeder of Bluewater Power, Sarnia, where this smart inverter is proposed to be installed. The smart PV inverter control is further shown to enhance the connectivity of PV solar farms in a realistic 44 kV Hydro One distribution feeder. It is demonstrated that if such a novel control is implemented on a 10 MW solar farm, the need for the actually installed STATCOM for voltage regulation and TOV control can be either minimized or altogether eliminated, bringing a significant savings for the utility PV solar systems employ inverters to transform dc power from solar panels into ac power for injecting into the power grids. Inverters that perform multiple functions in addition to real power production are known as “smart inverters”. This thesis presents a novel control of PV inverter as a dynamic reactive power compensator – STATCOM. This “smart PV inverter” control enables a PV solar inverter to operate in three modes – i) Full PV, ii) Partial STATCOM, and iii) Full STATCOM, depending upon system needs. The novel control is developed and demonstrated for the objectives of a) symmetrical voltage regulation, b) temporary overvoltage reduction, c) power factor correction, and d) reactive power control. In Full PV mode, the inverter performs only real power production based on solar radiation. In Partial STATCOM mode, the controller uses the remaining capacity of the inverter for voltage control, power factor correction and reactive power control. The Full STATCOM mode is invoked in emergency scenarios, such as faults, or severe voltage fluctuations. In this mode, the real power production is shut down temporarily and the entire inverter capacity is utilized for voltage regulation or TOV curtailment for providing critical support to the power system. This thesis presents a comprehensive design of the proposed smart inverter controller with all its associated system components. The performance of the smart inverter is simulated using the electromagnetic transients software PSCAD/EMTDC. It is further validated through Real Time Digital Simulation and Control Hardware in the Loop (CHIL) simulation. Finally the successful performance of the smart inverter controller is demonstrated on a 10 kW inverter in the laboratory on a simulated feeder of Bluewater Power, Sarnia, where this smart inverter is proposed to be installed. The smart PV inverter control is further shown to enhance the connectivity of PV solar farms in a realistic 44 kV Hydro One distribution feeder. It is demonstrated that if such a novel control is implemented on a 10 MW solar farm, the need for the actually installed STATCOM for voltage regulation and TOV control can be either minimized or altogether eliminated, bringing a significant savings for the utilit

    Comprehensive STATCOM Control For Distribution And Transmission System Applications

    Get PDF
    This thesis presents the development of a comprehensive STATCOM controller for load compensation, voltage regulation and voltage balancing in electric power distribution and transmission networks. The behavior of this controller is first validated with published results. Subsequently, the performance of this STATCOM controller is examined in a realistic Hydro One distribution feeder for accomplishing the compensation of both mildly and grossly unbalanced loads, and balancing of network voltages using PSCAD/EMTDC software. The STATCOM voltage control function is utilized for increasing the connectivity of wind plants in the same distribution feeder. The thesis further presents a frequency scanning technique for simple and rapid identification of the potential of subsynchronous resonance in induction generator based wind farms connected to series compensated lines, utilizing MATLAB software. This technique is validated by published eigenvalue analysis results. The voltage control performance of the developed comprehensive STATCOM controller is then demonstrated for different scenarios in the modified IEEE First SSR Benchmark transmission system for mitigating subsynchronous resonance in series compensated wind farms using industry grade PSCAD/EMTDC software
    • 

    corecore