58 research outputs found

    MARTE based modeling approach for Partial Dynamic Reconfigurable FPGAs

    Get PDF
    International audienceAs System-on-Chip (SoC) architectures become pivotal for designing embedded systems, the SoC design complexity continues to increase exponentially necessitating the need to find new design methodologies. In this paper we present a novel SoC co-design methodology based on Model Driven Engineering using the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology is utilized to model fine grain reconfigurable architectures such as FPGAs and extends the standard to integrate new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The goal is to carry out modeling at a high abstraction level expressed in UML (Unified Modeling Language) and following transformations of these models, automatically generate the code necessary for FPGA implementation

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    High level modeling of Partially Dynamically Reconfigurable FPGAs based on MDE and MARTE

    Get PDF
    International audienceSystem-on-Chip (SoC) architectures are becoming the preferred solution for implementing modern embedded systems. However their design complexity continues to augment due to the increase in integrated hardware resources requiring new design methodologies and tools. In this paper we present a novel SoC co-design methodology based on aModel Driven Engineering framework while utilizing the MARTE (Modeling and Analysis of Real-time and Embedded Systems) standard. This methodology permits us to model fine grain reconfigurable architectures such as FPGAs and allows to extend the standard for integrating new features such as Partial Dynamic Reconfiguration supported by modern FPGAs. The overall objective is to carry out modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformations of these models, automatically generate the necessary specifications required for FPGA implementation

    Modeling reconfigurable Systems-on-Chips with UML MARTE profile: an exploratory analysis

    Get PDF
    International audienceReconfigurable FPGA based Systems-on-Chip (SoC) architectures are increasingly becoming the preferred solution for implementing modern embedded systems, due to their flexible nature. However due to the tremendous amount of hardware resources available in these systems, new design methodologies and tools are required to reduce their design complexity. In this paper we present an exploratory analysis for specification of these systems, while utilizing the UML MARTE (Modeling and Analysis of Real-time and Embedded Systems) profile. Our contributions permit us to model fine grain reconfigurable FPGA based SoC architectures while extending the profile to integrate new features such as Partial Dynamic Reconfiguration supported by these modern systems. Finally we present the current limitations of the MARTE profile and ask some open questions regarding how these high level models can be effectively used as input for commercial FPGA simulation and synthesis tools. Solutions to these questions can help in creating a design flow from high level models to synthesis, placement and execution of these reconfigurable SoCs

    Targeting Reconfigurable FPGA based SoCs using the MARTE UML profile: from high abstraction levels to code generation

    Get PDF
    International audienceAs SoC design complexity is escalating to new heights, there is a critical need to find adequate approaches and tools to handle SoC co-design aspects. Additionally, modern reconfigurable SoCs offer advantages over classical SoCs as they integrate adaptivity features to cope with mutable design requirements and environment needs. This paper presents a novel approach to address system adaptivity and reconfigurability. A generic model of reactive control is presented in a SoC codesign framework: Gaspard. Afterwards, control integration at different levels of the framework is illustrated for both functional specification and FPGA synthesis. The presented work is based on Model-Driven Engineering and the UML MARTE profile proposed by Object Management Group, for modeling and analysis of real-time embedded systems. The paper thus presents a complete design flow to move from high level MARTE models to code generation, for implementation of dynamically reconfigurable SoCs

    Integrating Mode Automata Control Models in SoC Co-Design for Dynamically Reconfigurable FPGAs

    Get PDF
    International audienceThe number of integrated transistors that can be contained on a chip are increasing at an exponential rate, along with rise in targeted sophisticated applications. Thus the design of Systems-on-Chip (SoC) is becoming more and more complex. Hence there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. This paper presents a novel approach for expressing system adaptivity and reconfigurability in Gaspard, a SoC co-design framework, with special focus on partially dynamically reconfigurable FPGAs. The framework is compliant with UML MARTE profile proposed by Object Management Group, for modeling and analysis of realtime embedded systems. The overall objective is to carry out system modeling at a high abstraction level expressed in UML; and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesi

    Models for Co-Design of Heterogeneous Dynamically Reconfigurable SoCs

    Get PDF
    International audienceThe design of Systems-on-Chip is becoming an increasing difficult challenge due to the continuous exponential evolution of the targeted complex architectures and applications. Thus, seamless methodologies and tools are required to resolve the SoC design issues. This chapter presents a high level component based approach for expressing system reconfigurability in SoC co-design. A generic model of reactive control is presented for Gaspard2, a SoC co-design framework. Control integration in different levels of the framework is explored along with a comparison of their advantages and disadvantages. Afterwards, control integration at another high abstraction level is investigated which proves to be more beneficial then the other alternatives. This integration allows to integrate reconfigurability features in modern SoCs. Finally a case study is presented for validation purposes. The presented works are based on Model-Driven Engineering (MDE) and UML MARTE profile for modeling and analysis of real-time embedded systems

    MARTE based design flow for Partially Reconfigurable Systems-on-Chips

    Get PDF
    International audienceSystems-on-Chip (SoCs) are considered an integral solution for designing embedded systems, for targeting complex intensive parallel computation applications. As advances in SoC technology permit integration of increasing number of hardware resources on a single chip, the targeted application domains such as software-defined radio are become increasingly sophisticated. The fallout of this complexity is that the system design, particularly software design, does not evolve at the same pace as that of hardware leading to a significant productivity gap. Adaptivity and reconfigurability are also critical issues for SoCs which must be able to cope with end user environment and requirements

    High Level Design of adaptive distributed controller for Partial Dynamic reconfiguration in FPGA

    Get PDF
    International audienceControlling dynamic and partial reconfigurations becomes one of the most important key issues in modern embedded systems design. In fact, in such systems, the reconfiguration controller can significantly affect the system performances. Indeed, the controller has to handle efficiently three major tasks during runtime: observation (monitoring), taking reconfiguration decisions and notify decisions to the rest of the system in order to realize it. We present in this paper a novel high level approach permitting to model, using MARTE UML profile, modular and flexible distributed controllers for dynamic reconfiguration management. This approach permits components/ models reuse and allows systematic code generation. It consequently makes reconfigurable systems design less tedious and reduces time to market

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis
    • …
    corecore