28,998 research outputs found

    3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit

    Full text link
    We present 3DTouch, a novel 3D wearable input device worn on the fingertip for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D input device that is self-contained, mobile, and universally working across various 3D platforms. This paper presents a low-cost solution to designing and implementing such a device. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. On the other hand, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices. We propose a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure

    Adaptive User Perspective Rendering for Handheld Augmented Reality

    Full text link
    Handheld Augmented Reality commonly implements some variant of magic lens rendering, which turns only a fraction of the user's real environment into AR while the rest of the environment remains unaffected. Since handheld AR devices are commonly equipped with video see-through capabilities, AR magic lens applications often suffer from spatial distortions, because the AR environment is presented from the perspective of the camera of the mobile device. Recent approaches counteract this distortion based on estimations of the user's head position, rendering the scene from the user's perspective. To this end, approaches usually apply face-tracking algorithms on the front camera of the mobile device. However, this demands high computational resources and therefore commonly affects the performance of the application beyond the already high computational load of AR applications. In this paper, we present a method to reduce the computational demands for user perspective rendering by applying lightweight optical flow tracking and an estimation of the user's motion before head tracking is started. We demonstrate the suitability of our approach for computationally limited mobile devices and we compare it to device perspective rendering, to head tracked user perspective rendering, as well as to fixed point of view user perspective rendering

    A new method for interacting with multi-window applications on large, high resolution displays

    Get PDF
    Physically large display walls can now be constructed using off-the-shelf computer hardware. The high resolution of these displays (e.g., 50 million pixels) means that a large quantity of data can be presented to users, so the displays are well suited to visualization applications. However, current methods of interacting with display walls are somewhat time consuming. We have analyzed how users solve real visualization problems using three desktop applications (XmdvTool, Iris Explorer and Arc View), and used a new taxonomy to classify users’ actions and illustrate the deficiencies of current display wall interaction methods. Following this we designed a novel methodfor interacting with display walls, which aims to let users interact as quickly as when a visualization application is used on a desktop system. Informal feedback gathered from our working prototype shows that interaction is both fast and fluid

    Seeking particle dark matter in the TeV sky

    Full text link
    Under the assumption that dark matter is made of new particles, annihilations of those are required to reproduce the correct dark matter abundance in the Universe. This process can occur in dense regions of our Galaxy such as the Galactic center, dwarf galaxies and other types of sub-haloes. High-energy gamma-rays are expected to be produced in dark matter particle collisions and could be detected by ground-based Cherenkov telescopes such as HESS, MAGIC and VERITAS. The main experimental challenges to get constraints on particle dark matter models are reviewed, making explicit the pros and cons that are inherent to this technique, together with the current results from running observatories. Main results concerning dark matter searches towards selected targets with Cherenkov telescopes are presented. Eventually, a focus is made on a new way to perform a search for Galactic subhaloes with such telescopes, based on wide-field surveys, as well as future prospects.Comment: 12 pages, 10 figures. To appear in the proceedings of the eleventh international symposium Frontiers of Fundamental Physic

    Planet transit and stellar granulation detection with interferometry

    Full text link
    Aims. We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger-grid and synthetic images computed with the radiative transfer code Optim3D to provide interferometric observables to extract the signature of stellar granulation and transiting planets. Methods. We computed intensity maps from RHD simulations for twelve interferometric instruments covering wavelengths ranging from optical to infrared. The stellar surface asymmetries in the brightness distribution mostly affect closure phases. We compared the closure phases of the system star with a transiting planet and the star alone and considered the impact of magnetic spots constructing a hypothetical starspots image. Results. All the simulations show departure from the axisymmetric case at all wavelengths. We presented two possible targets (Beta Com and Procyon) and found that departures up to 16 deg can be detected on the 3rd lobe and higher. In particular, MIRC is the most appropriate instrument because it combines good UV coverage and long baselines. Moreover, we explored the impact of convection on interferometric planet signature for three prototypes of planets. It is possible to disentangle the signature of the planet at particular wavelengths (either in the infrared or in the optical) by comparing the closure phases of the star at difference phases of the planetary transit. Conclusions. The detection and characterisation of planets must be based on a comprehensive knowledge of the host star; this includes the detailed study of the stellar surface convection with interferometric techniques. In this context, RHD simulations are crucial to reach this aim. We emphasize that interferometric observations should be pushed at high spatial frequencies by accumulating observations on closure phases at short and long baselines.Comment: accepted in Astronomy and Astrophysics, 13 pages. Some figures have reduced resolution to decrease the size of the output file. Please contact [email protected] to have the high resolution version of the pape

    Stellar granulation and interferometry

    Full text link
    Stars are not smooth. Their photosphere is covered by a granulation pattern associated with the heat transport by convection. The convection-related surface structures have different size, depth, and temporal variations with respect to the stellar type. The related activity (in addition to other phenomena such as magnetic spots, rotation, dust, etc.) potentially causes bias in stellar parameters determination, radial velocity, chemical abundances determinations, and exoplanet transit detections. The role of long-baseline interferometric observations in this astrophysical context is crucial to characterize the stellar surface dynamics and correct the potential biases. In this Chapter, we present how the granulation pattern is expected for different kind of stellar types ranging from main sequence to extremely evolved stars of different masses and how interferometric techniques help to study their photospheric dynamics.Comment: To appear in the Book of the VLTI School 2013, held 9-21 Sep 2013 Barcelonnette (France), "What the highest angular resolution can bring to stellar astrophysics?", Ed. Millour, Chiavassa, Bigot, Chesneau, Meilland, Stee, EAS Publications Series (2015
    • …
    corecore